Based on the ImageNet-1k classification dataset, the 35 classification network structures supported by PaddleClas and the corresponding 164 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The evaluation environment is as follows.
- CPU evaluation environment is based on Snapdragon 855 (SD855).
- The GPU evaluation speed is measured by running 500 times under the FP32+TensorRT configuration (excluding the warmup time of the first 10 times).
Curves of accuracy to the inference time of common server-side models are shown as follows.
Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.
Accuracy and inference time of the prtrained models based on SSLD distillation are as follows. More detailed information can be refered to SSLD distillation tutorial.
- Server-side distillation pretrained models
Model | Top-1 Acc | Reference Top-1 Acc |
Acc gain | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|---|
ResNet34_vd_ssld | 0.797 | 0.760 | 0.037 | 2.434 | 6.222 | 7.39 | 21.82 | Download link |
ResNet50_vd_ssld | 0.830 | 0.792 | 0.039 | 3.531 | 8.090 | 8.67 | 25.58 | Download link |
ResNet101_vd_ssld | 0.837 | 0.802 | 0.035 | 6.117 | 13.762 | 16.1 | 44.57 | Download link |
Res2Net50_vd_26w_4s_ssld | 0.831 | 0.798 | 0.033 | 4.527 | 9.657 | 8.37 | 25.06 | Download link |
Res2Net101_vd_26w_4s_ssld | 0.839 | 0.806 | 0.033 | 8.087 | 17.312 | 16.67 | 45.22 | Download link |
Res2Net200_vd_26w_4s_ssld | 0.851 | 0.812 | 0.049 | 14.678 | 32.350 | 31.49 | 76.21 | Download link |
HRNet_W18_C_ssld | 0.812 | 0.769 | 0.043 | 7.406 | 13.297 | 4.14 | 21.29 | Download link |
HRNet_W48_C_ssld | 0.836 | 0.790 | 0.046 | 13.707 | 34.435 | 34.58 | 77.47 | Download link |
SE_HRNet_W64_C_ssld | 0.848 | - | - | 31.697 | 94.995 | 57.83 | 128.97 | Download link |
- Mobile-side distillation pretrained models
Model | Top-1 Acc | Reference Top-1 Acc |
Acc gain | SD855 time(ms) bs=1 |
Flops(G) | Params(M) | Storage Size(M) | Download Address |
---|---|---|---|---|---|---|---|---|
MobileNetV1_ssld | 0.779 | 0.710 | 0.069 | 32.523 | 1.11 | 4.19 | 16 | Download link |
MobileNetV2_ssld | 0.767 | 0.722 | 0.045 | 23.318 | 0.6 | 3.44 | 14 | Download link |
MobileNetV3_small_x0_35_ssld | 0.556 | 0.530 | 0.026 | 2.635 | 0.026 | 1.66 | 6.9 | Download link |
MobileNetV3_large_x1_0_ssld | 0.790 | 0.753 | 0.036 | 19.308 | 0.45 | 5.47 | 21 | Download link |
MobileNetV3_small_x1_0_ssld | 0.713 | 0.682 | 0.031 | 6.546 | 0.123 | 2.94 | 12 | Download link |
GhostNet_x1_3_ssld | 0.794 | 0.757 | 0.037 | 19.983 | 0.44 | 7.3 | 29 | Download link |
- Intel-CPU-side distillation pretrained models
Model | Top-1 Acc | Reference Top-1 Acc |
Acc gain | Intel-Xeon-Gold-6148 time(ms) bs=1 |
Flops(M) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
PPLCNet_x0_5_ssld | 0.661 | 0.631 | 0.030 | 2.05 | 47 | 1.9 | Download link |
PPLCNet_x1_0_ssld | 0.744 | 0.713 | 0.033 | 2.46 | 161 | 3.0 | Download link |
PPLCNet_x2_5_ssld | 0.808 | 0.766 | 0.042 | 5.39 | 906 | 9.0 | Download link |
- Note:
Reference Top-1 Acc
means accuracy of pretrained models which are trained on ImageNet1k dataset.
Accuracy and inference time metrics of PPLCNet series models are shown as follows. More detailed information can be refered to PPLCNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | Intel-Xeon-Gold-6148 time(ms) bs=1 |
FLOPs(M) | Params(M) | Download Address |
---|---|---|---|---|---|---|
PPLCNet_x0_25 | 0.5186 | 0.7565 | 1.74 | 18 | 1.5 | Download link |
PPLCNet_x0_35 | 0.5809 | 0.8083 | 1.92 | 29 | 1.6 | Download link |
PPLCNet_x0_5 | 0.6314 | 0.8466 | 2.05 | 47 | 1.9 | Download link |
PPLCNet_x0_75 | 0.6818 | 0.8830 | 2.29 | 99 | 2.4 | Download link |
PPLCNet_x1_0 | 0.7132 | 0.9003 | 2.46 | 161 | 3.0 | Download link |
PPLCNet_x1_5 | 0.7371 | 0.9153 | 3.19 | 342 | 4.5 | Download link |
PPLCNet_x2_0 | 0.7518 | 0.9227 | 4.27 | 590 | 6.5 | Download link |
PPLCNet_x2_5 | 0.7660 | 0.9300 | 5.39 | 906 | 9.0 | Download link |
Accuracy and inference time metrics of ResNet and Vd series models are shown as follows. More detailed information can be refered to ResNet and Vd series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ResNet18 | 0.7098 | 0.8992 | 1.45606 | 3.56305 | 3.66 | 11.69 | Download link |
ResNet18_vd | 0.7226 | 0.9080 | 1.54557 | 3.85363 | 4.14 | 11.71 | Download link |
ResNet34 | 0.7457 | 0.9214 | 2.34957 | 5.89821 | 7.36 | 21.8 | Download link |
ResNet34_vd | 0.7598 | 0.9298 | 2.43427 | 6.22257 | 7.39 | 21.82 | Download link |
ResNet34_vd_ssld | 0.7972 | 0.9490 | 2.43427 | 6.22257 | 7.39 | 21.82 | Download link |
ResNet50 | 0.7650 | 0.9300 | 3.47712 | 7.84421 | 8.19 | 25.56 | Download link |
ResNet50_vc | 0.7835 | 0.9403 | 3.52346 | 8.10725 | 8.67 | 25.58 | Download link |
ResNet50_vd | 0.7912 | 0.9444 | 3.53131 | 8.09057 | 8.67 | 25.58 | Download link |
ResNet101 | 0.7756 | 0.9364 | 6.07125 | 13.40573 | 15.52 | 44.55 | Download link |
ResNet101_vd | 0.8017 | 0.9497 | 6.11704 | 13.76222 | 16.1 | 44.57 | Download link |
ResNet152 | 0.7826 | 0.9396 | 8.50198 | 19.17073 | 23.05 | 60.19 | Download link |
ResNet152_vd | 0.8059 | 0.9530 | 8.54376 | 19.52157 | 23.53 | 60.21 | Download link |
ResNet200_vd | 0.8093 | 0.9533 | 10.80619 | 25.01731 | 30.53 | 74.74 | Download link |
ResNet50_vd_ ssld |
0.8300 | 0.9640 | 3.53131 | 8.09057 | 8.67 | 25.58 | Download link |
ResNet101_vd_ ssld |
0.8373 | 0.9669 | 6.11704 | 13.76222 | 16.1 | 44.57 | Download link |
Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to Mobile series tutorial.
Model | Top-1 Acc | Top-5 Acc | SD855 time(ms) bs=1 |
Flops(G) | Params(M) | Model storage size(M) | Download Address |
---|---|---|---|---|---|---|---|
MobileNetV1_ x0_25 |
0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 | Download link |
MobileNetV1_ x0_5 |
0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 | Download link |
MobileNetV1_ x0_75 |
0.6881 | 0.8823 | 19.436399 | 0.63 | 2.55 | 10 | Download link |
MobileNetV1 | 0.7099 | 0.8968 | 32.523048 | 1.11 | 4.19 | 16 | Download link |
MobileNetV1_ ssld |
0.7789 | 0.9394 | 32.523048 | 1.11 | 4.19 | 16 | Download link |
MobileNetV2_ x0_25 |
0.5321 | 0.7652 | 3.79925 | 0.05 | 1.5 | 6.1 | Download link |
MobileNetV2_ x0_5 |
0.6503 | 0.8572 | 8.7021 | 0.17 | 1.93 | 7.8 | Download link |
MobileNetV2_ x0_75 |
0.6983 | 0.8901 | 15.531351 | 0.35 | 2.58 | 10 | Download link |
MobileNetV2 | 0.7215 | 0.9065 | 23.317699 | 0.6 | 3.44 | 14 | Download link |
MobileNetV2_ x1_5 |
0.7412 | 0.9167 | 45.623848 | 1.32 | 6.76 | 26 | Download link |
MobileNetV2_ x2_0 |
0.7523 | 0.9258 | 74.291649 | 2.32 | 11.13 | 43 | Download link |
MobileNetV2_ ssld |
0.7674 | 0.9339 | 23.317699 | 0.6 | 3.44 | 14 | Download link |
MobileNetV3_ large_x1_25 |
0.7641 | 0.9295 | 28.217701 | 0.714 | 7.44 | 29 | Download link |
MobileNetV3_ large_x1_0 |
0.7532 | 0.9231 | 19.30835 | 0.45 | 5.47 | 21 | Download link |
MobileNetV3_ large_x0_75 |
0.7314 | 0.9108 | 13.5646 | 0.296 | 3.91 | 16 | Download link |
MobileNetV3_ large_x0_5 |
0.6924 | 0.8852 | 7.49315 | 0.138 | 2.67 | 11 | Download link |
MobileNetV3_ large_x0_35 |
0.6432 | 0.8546 | 5.13695 | 0.077 | 2.1 | 8.6 | Download link |
MobileNetV3_ small_x1_25 |
0.7067 | 0.8951 | 9.2745 | 0.195 | 3.62 | 14 | Download link |
MobileNetV3_ small_x1_0 |
0.6824 | 0.8806 | 6.5463 | 0.123 | 2.94 | 12 | Download link |
MobileNetV3_ small_x0_75 |
0.6602 | 0.8633 | 5.28435 | 0.088 | 2.37 | 9.6 | Download link |
MobileNetV3_ small_x0_5 |
0.5921 | 0.8152 | 3.35165 | 0.043 | 1.9 | 7.8 | Download link |
MobileNetV3_ small_x0_35 |
0.5303 | 0.7637 | 2.6352 | 0.026 | 1.66 | 6.9 | Download link |
MobileNetV3_ small_x0_35_ssld |
0.5555 | 0.7771 | 2.6352 | 0.026 | 1.66 | 6.9 | Download link |
MobileNetV3_ large_x1_0_ssld |
0.7896 | 0.9448 | 19.30835 | 0.45 | 5.47 | 21 | Download link |
MobileNetV3_small_ x1_0_ssld |
0.7129 | 0.9010 | 6.5463 | 0.123 | 2.94 | 12 | Download link |
ShuffleNetV2 | 0.6880 | 0.8845 | 10.941 | 0.28 | 2.26 | 9 | Download link |
ShuffleNetV2_ x0_25 |
0.4990 | 0.7379 | 2.329 | 0.03 | 0.6 | 2.7 | Download link |
ShuffleNetV2_ x0_33 |
0.5373 | 0.7705 | 2.64335 | 0.04 | 0.64 | 2.8 | Download link |
ShuffleNetV2_ x0_5 |
0.6032 | 0.8226 | 4.2613 | 0.08 | 1.36 | 5.6 | Download link |
ShuffleNetV2_ x1_5 |
0.7163 | 0.9015 | 19.3522 | 0.58 | 3.47 | 14 | Download link |
ShuffleNetV2_ x2_0 |
0.7315 | 0.9120 | 34.770149 | 1.12 | 7.32 | 28 | Download link |
ShuffleNetV2_ swish |
0.7003 | 0.8917 | 16.023151 | 0.29 | 2.26 | 9.1 | Download link |
GhostNet_ x0_5 |
0.6688 | 0.8695 | 5.7143 | 0.082 | 2.6 | 10 | Download link |
GhostNet_ x1_0 |
0.7402 | 0.9165 | 13.5587 | 0.294 | 5.2 | 20 | Download link |
GhostNet_ x1_3 |
0.7579 | 0.9254 | 19.9825 | 0.44 | 7.3 | 29 | Download link |
GhostNet_ x1_3_ssld |
0.7938 | 0.9449 | 19.9825 | 0.44 | 7.3 | 29 | Download link |
Accuracy and inference time metrics of SEResNeXt and Res2Net series models are shown as follows. More detailed information can be refered to SEResNext and_Res2Net series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
Res2Net50_ 26w_4s |
0.7933 | 0.9457 | 4.47188 | 9.65722 | 8.52 | 25.7 | Download link |
Res2Net50_vd_ 26w_4s |
0.7975 | 0.9491 | 4.52712 | 9.93247 | 8.37 | 25.06 | Download link |
Res2Net50_ 14w_8s |
0.7946 | 0.9470 | 5.4026 | 10.60273 | 9.01 | 25.72 | Download link |
Res2Net101_vd_ 26w_4s |
0.8064 | 0.9522 | 8.08729 | 17.31208 | 16.67 | 45.22 | Download link |
Res2Net200_vd_ 26w_4s |
0.8121 | 0.9571 | 14.67806 | 32.35032 | 31.49 | 76.21 | Download link |
Res2Net200_vd_ 26w_4s_ssld |
0.8513 | 0.9742 | 14.67806 | 32.35032 | 31.49 | 76.21 | Download link |
ResNeXt50_ 32x4d |
0.7775 | 0.9382 | 7.56327 | 10.6134 | 8.02 | 23.64 | Download link |
ResNeXt50_vd_ 32x4d |
0.7956 | 0.9462 | 7.62044 | 11.03385 | 8.5 | 23.66 | Download link |
ResNeXt50_ 64x4d |
0.7843 | 0.9413 | 13.80962 | 18.4712 | 15.06 | 42.36 | Download link |
ResNeXt50_vd_ 64x4d |
0.8012 | 0.9486 | 13.94449 | 18.88759 | 15.54 | 42.38 | Download link |
ResNeXt101_ 32x4d |
0.7865 | 0.9419 | 16.21503 | 19.96568 | 15.01 | 41.54 | Download link |
ResNeXt101_vd_ 32x4d |
0.8033 | 0.9512 | 16.28103 | 20.25611 | 15.49 | 41.56 | Download link |
ResNeXt101_ 64x4d |
0.7835 | 0.9452 | 30.4788 | 36.29801 | 29.05 | 78.12 | Download link |
ResNeXt101_vd_ 64x4d |
0.8078 | 0.9520 | 30.40456 | 36.77324 | 29.53 | 78.14 | Download link |
ResNeXt152_ 32x4d |
0.7898 | 0.9433 | 24.86299 | 29.36764 | 22.01 | 56.28 | Download link |
ResNeXt152_vd_ 32x4d |
0.8072 | 0.9520 | 25.03258 | 30.08987 | 22.49 | 56.3 | Download link |
ResNeXt152_ 64x4d |
0.7951 | 0.9471 | 46.7564 | 56.34108 | 43.03 | 107.57 | Download link |
ResNeXt152_vd_ 64x4d |
0.8108 | 0.9534 | 47.18638 | 57.16257 | 43.52 | 107.59 | Download link |
SE_ResNet18_vd | 0.7333 | 0.9138 | 1.7691 | 4.19877 | 4.14 | 11.8 | Download link |
SE_ResNet34_vd | 0.7651 | 0.9320 | 2.88559 | 7.03291 | 7.84 | 21.98 | Download link |
SE_ResNet50_vd | 0.7952 | 0.9475 | 4.28393 | 10.38846 | 8.67 | 28.09 | Download link |
SE_ResNeXt50_ 32x4d |
0.7844 | 0.9396 | 8.74121 | 13.563 | 8.02 | 26.16 | Download link |
SE_ResNeXt50_vd_ 32x4d |
0.8024 | 0.9489 | 9.17134 | 14.76192 | 10.76 | 26.28 | Download link |
SE_ResNeXt101_ 32x4d |
0.7939 | 0.9443 | 18.82604 | 25.31814 | 15.02 | 46.28 | Download link |
SENet154_vd | 0.8140 | 0.9548 | 53.79794 | 66.31684 | 45.83 | 114.29 | Download link |
Accuracy and inference time metrics of DPN and DenseNet series models are shown as follows. More detailed information can be refered to DPN and DenseNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
DenseNet121 | 0.7566 | 0.9258 | 4.40447 | 9.32623 | 5.69 | 7.98 | Download link |
DenseNet161 | 0.7857 | 0.9414 | 10.39152 | 22.15555 | 15.49 | 28.68 | Download link |
DenseNet169 | 0.7681 | 0.9331 | 6.43598 | 12.98832 | 6.74 | 14.15 | Download link |
DenseNet201 | 0.7763 | 0.9366 | 8.20652 | 17.45838 | 8.61 | 20.01 | Download link |
DenseNet264 | 0.7796 | 0.9385 | 12.14722 | 26.27707 | 11.54 | 33.37 | Download link |
DPN68 | 0.7678 | 0.9343 | 11.64915 | 12.82807 | 4.03 | 10.78 | Download link |
DPN92 | 0.7985 | 0.9480 | 18.15746 | 23.87545 | 12.54 | 36.29 | Download link |
DPN98 | 0.8059 | 0.9510 | 21.18196 | 33.23925 | 22.22 | 58.46 | Download link |
DPN107 | 0.8089 | 0.9532 | 27.62046 | 52.65353 | 35.06 | 82.97 | Download link |
DPN131 | 0.8070 | 0.9514 | 28.33119 | 46.19439 | 30.51 | 75.36 | Download link |
Accuracy and inference time metrics of HRNet series models are shown as follows. More detailed information can be refered to Mobile series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
HRNet_W18_C | 0.7692 | 0.9339 | 7.40636 | 13.29752 | 4.14 | 21.29 | Download link |
HRNet_W18_C_ssld | 0.81162 | 0.95804 | 7.40636 | 13.29752 | 4.14 | 21.29 | Download link |
HRNet_W30_C | 0.7804 | 0.9402 | 9.57594 | 17.35485 | 16.23 | 37.71 | Download link |
HRNet_W32_C | 0.7828 | 0.9424 | 9.49807 | 17.72921 | 17.86 | 41.23 | Download link |
HRNet_W40_C | 0.7877 | 0.9447 | 12.12202 | 25.68184 | 25.41 | 57.55 | Download link |
HRNet_W44_C | 0.7900 | 0.9451 | 13.19858 | 32.25202 | 29.79 | 67.06 | Download link |
HRNet_W48_C | 0.7895 | 0.9442 | 13.70761 | 34.43572 | 34.58 | 77.47 | Download link |
HRNet_W48_C_ssld | 0.8363 | 0.9682 | 13.70761 | 34.43572 | 34.58 | 77.47 | Download link |
HRNet_W64_C | 0.7930 | 0.9461 | 17.57527 | 47.9533 | 57.83 | 128.06 | Download link |
SE_HRNet_W64_C_ssld | 0.8475 | 0.9726 | 31.69770 | 94.99546 | 57.83 | 128.97 | Download link |
Accuracy and inference time metrics of Inception series models are shown as follows. More detailed information can be refered to Inception series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
GoogLeNet | 0.7070 | 0.8966 | 1.88038 | 4.48882 | 2.88 | 8.46 | Download link |
Xception41 | 0.7930 | 0.9453 | 4.96939 | 17.01361 | 16.74 | 22.69 | Download link |
Xception41_deeplab | 0.7955 | 0.9438 | 5.33541 | 17.55938 | 18.16 | 26.73 | Download link |
Xception65 | 0.8100 | 0.9549 | 7.26158 | 25.88778 | 25.95 | 35.48 | Download link |
Xception65_deeplab | 0.8032 | 0.9449 | 7.60208 | 26.03699 | 27.37 | 39.52 | Download link |
Xception71 | 0.8111 | 0.9545 | 8.72457 | 31.55549 | 31.77 | 37.28 | Download link |
InceptionV3 | 0.7914 | 0.9459 | 6.64054 | 13.53630 | 11.46 | 23.83 | Download link |
InceptionV4 | 0.8077 | 0.9526 | 12.99342 | 25.23416 | 24.57 | 42.68 | Download link |
Accuracy and inference time metrics of EfficientNet and ResNeXt101_wsl series models are shown as follows. More detailed information can be refered to EfficientNet and ResNeXt101_wsl series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ResNeXt101_ 32x8d_wsl |
0.8255 | 0.9674 | 18.52528 | 34.25319 | 29.14 | 78.44 | Download link |
ResNeXt101_ 32x16d_wsl |
0.8424 | 0.9726 | 25.60395 | 71.88384 | 57.55 | 152.66 | Download link |
ResNeXt101_ 32x32d_wsl |
0.8497 | 0.9759 | 54.87396 | 160.04337 | 115.17 | 303.11 | Download link |
ResNeXt101_ 32x48d_wsl |
0.8537 | 0.9769 | 99.01698256 | 315.91261 | 173.58 | 456.2 | Download link |
Fix_ResNeXt101_ 32x48d_wsl |
0.8626 | 0.9797 | 160.0838242 | 595.99296 | 354.23 | 456.2 | Download link |
EfficientNetB0 | 0.7738 | 0.9331 | 3.442 | 6.11476 | 0.72 | 5.1 | Download link |
EfficientNetB1 | 0.7915 | 0.9441 | 5.3322 | 9.41795 | 1.27 | 7.52 | Download link |
EfficientNetB2 | 0.7985 | 0.9474 | 6.29351 | 10.95702 | 1.85 | 8.81 | Download link |
EfficientNetB3 | 0.8115 | 0.9541 | 7.67749 | 16.53288 | 3.43 | 11.84 | Download link |
EfficientNetB4 | 0.8285 | 0.9623 | 12.15894 | 30.94567 | 8.29 | 18.76 | Download link |
EfficientNetB5 | 0.8362 | 0.9672 | 20.48571 | 61.60252 | 19.51 | 29.61 | Download link |
EfficientNetB6 | 0.8400 | 0.9688 | 32.62402 | - | 36.27 | 42 | Download link |
EfficientNetB7 | 0.8430 | 0.9689 | 53.93823 | - | 72.35 | 64.92 | Download link |
EfficientNetB0_ small |
0.7580 | 0.9258 | 2.3076 | 4.71886 | 0.72 | 4.65 | Download link |
Accuracy and inference time metrics of ResNeSt and RegNet series models are shown as follows. More detailed information can be refered to ResNeSt and RegNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ResNeSt50_ fast_1s1x64d |
0.8035 | 0.9528 | 3.45405 | 8.72680 | 8.68 | 26.3 | Download link |
ResNeSt50 | 0.8083 | 0.9542 | 6.69042 | 8.01664 | 10.78 | 27.5 | Download link |
RegNetX_4GF | 0.785 | 0.9416 | 6.46478 | 11.19862 | 8 | 22.1 | Download link |
Accuracy and inference time metrics of ViT and DeiT series models are shown as follows. More detailed information can be refered to Transformer series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ViT_small_ patch16_224 |
0.7769 | 0.9342 | - | - | Download link | ||
ViT_base_ patch16_224 |
0.8195 | 0.9617 | - | - | 86 | Download link | |
ViT_base_ patch16_384 |
0.8414 | 0.9717 | - | - | Download link | ||
ViT_base_ patch32_384 |
0.8176 | 0.9613 | - | - | Download link | ||
ViT_large_ patch16_224 |
0.8323 | 0.9650 | - | - | 307 | Download link | |
ViT_large_ patch16_384 |
0.8513 | 0.9736 | - | - | Download link | ||
ViT_large_ patch32_384 |
0.8153 | 0.9608 | - | - | Download link | ||
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
DeiT_tiny_ patch16_224 |
0.718 | 0.910 | - | - | 5 | Download link | |
DeiT_small_ patch16_224 |
0.796 | 0.949 | - | - | 22 | Download link | |
DeiT_base_ patch16_224 |
0.817 | 0.957 | - | - | 86 | Download link | |
DeiT_base_ patch16_384 |
0.830 | 0.962 | - | - | 87 | Download link | |
DeiT_tiny_ distilled_patch16_224 |
0.741 | 0.918 | - | - | 6 | Download link | |
DeiT_small_ distilled_patch16_224 |
0.809 | 0.953 | - | - | 22 | Download link | |
DeiT_base_ distilled_patch16_224 |
0.831 | 0.964 | - | - | 87 | Download link | |
DeiT_base_ distilled_patch16_384 |
0.851 | 0.973 | - | - | 88 | Download link | |
Accuracy and inference time metrics of RepVGG series models are shown as follows. More detailed information can be refered to RepVGG series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
RepVGG_A0 | 0.7131 | 0.9016 | Download link | ||||
RepVGG_A1 | 0.7380 | 0.9146 | Download link | ||||
RepVGG_A2 | 0.7571 | 0.9264 | Download link | ||||
RepVGG_B0 | 0.7450 | 0.9213 | Download link | ||||
RepVGG_B1 | 0.7773 | 0.9385 | Download link | ||||
RepVGG_B2 | 0.7813 | 0.9410 | Download link | ||||
RepVGG_B1g2 | 0.7732 | 0.9359 | Download link | ||||
RepVGG_B1g4 | 0.7675 | 0.9335 | Download link | ||||
RepVGG_B2g4 | 0.7881 | 0.9448 | Download link | ||||
RepVGG_B3g4 | 0.7965 | 0.9485 | Download link |
Accuracy and inference time metrics of MixNet series models are shown as follows. More detailed information can be refered to MixNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(M) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
MixNet_S | 0.7628 | 0.9299 | 252.977 | 4.167 | Download link | ||
MixNet_M | 0.7767 | 0.9364 | 357.119 | 5.065 | Download link | ||
MixNet_L | 0.7860 | 0.9437 | 579.017 | 7.384 | Download link |
Accuracy and inference time metrics of ReXNet series models are shown as follows. More detailed information can be refered to ReXNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
ReXNet_1_0 | 0.7746 | 0.9370 | 0.415 | 4.838 | Download link | ||
ReXNet_1_3 | 0.7913 | 0.9464 | 0.683 | 7.611 | Download link | ||
ReXNet_1_5 | 0.8006 | 0.9512 | 0.900 | 9.791 | Download link | ||
ReXNet_2_0 | 0.8122 | 0.9536 | 1.561 | 16.449 | Download link | ||
ReXNet_3_0 | 0.8209 | 0.9612 | 3.445 | 34.833 | Download link |
Accuracy and inference time metrics of SwinTransformer series models are shown as follows. More detailed information can be refered toSwinTransformer series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | 4.5 | 28 | Download link | ||
SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | 8.7 | 50 | Download link | ||
SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | 15.4 | 88 | Download link | ||
SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | 47.1 | 88 | Download link | ||
SwinTransformer_base_patch4_window7_224[1] | 0.8487 | 0.9746 | 15.4 | 88 | Download link | ||
SwinTransformer_base_patch4_window12_384[1] | 0.8642 | 0.9807 | 47.1 | 88 | Download link | ||
SwinTransformer_large_patch4_window7_224[1] | 0.8596 | 0.9783 | 34.5 | 197 | Download link | ||
SwinTransformer_large_patch4_window12_384[1] | 0.8719 | 0.9823 | 103.9 | 197 | Download link |
[1] Based on the pre-trained model of the ImageNet22k dataset, it is obtained by finetuning from the ImageNet1k data set.
Accuracy and inference time metrics of LeViT series models are shown as follows. More detailed information can be refered toLeViT series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(M) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
LeViT_128S | 0.7598 | 0.9269 | 305 | 7.8 | Download link | ||
LeViT_128 | 0.7810 | 0.9371 | 406 | 9.2 | Download link | ||
LeViT_192 | 0.7934 | 0.9446 | 658 | 11 | Download link | ||
LeViT_256 | 0.8085 | 0.9497 | 1120 | 19 | Download link | ||
LeViT_384 | 0.8191 | 0.9551 | 2353 | 39 | Download link |
Note:The difference in accuracy from Reference is due to the difference in data preprocessing and the absence of distilled head as output.
Accuracy and inference time metrics of Twins series models are shown as follows. More detailed information can be refered toTwins series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
pcpvt_small | 0.8082 | 0.9552 | 3.7 | 24.1 | Download link | ||
pcpvt_base | 0.8242 | 0.9619 | 6.4 | 43.8 | Download link | ||
pcpvt_large | 0.8273 | 0.9650 | 9.5 | 60.9 | Download link | ||
alt_gvt_small | 0.8140 | 0.9546 | 2.8 | 24 | Download link | ||
alt_gvt_base | 0.8294 | 0.9621 | 8.3 | 56 | Download link | ||
alt_gvt_large | 0.8331 | 0.9642 | 14.8 | 99.2 | Download link |
Note:The difference in accuracy from Reference is due to the difference in data preprocessing.
Accuracy and inference time metrics of HarDNet series models are shown as follows. More detailed information can be refered toHarDNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
HarDNet39_ds | 0.7133 | 0.8998 | 0.4 | 3.5 | Download link | ||
HarDNet68_ds | 0.7362 | 0.9152 | 0.8 | 4.2 | Download link | ||
HarDNet68 | 0.7546 | 0.9265 | 4.3 | 17.6 | Download link | ||
HarDNet85 | 0.7744 | 0.9355 | 9.1 | 36.7 | Download link |
Accuracy and inference time metrics of DLA series models are shown as follows. More detailed information can be refered toDLA series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
DLA102 | 0.7893 | 0.9452 | 7.2 | 33.3 | Download link | ||
DLA102x2 | 0.7885 | 0.9445 | 9.3 | 41.4 | Download link | ||
DLA102x | 0.781 | 0.9400 | 5.9 | 26.4 | Download link | ||
DLA169 | 0.7809 | 0.9409 | 11.6 | 53.5 | Download link | ||
DLA34 | 0.7603 | 0.9298 | 3.1 | 15.8 | Download link | ||
DLA46_c | 0.6321 | 0.853 | 0.5 | 1.3 | Download link | ||
DLA60 | 0.7610 | 0.9292 | 4.2 | 22.0 | Download link | ||
DLA60x_c | 0.6645 | 0.8754 | 0.6 | 1.3 | Download link | ||
DLA60x | 0.7753 | 0.9378 | 3.5 | 17.4 | Download link |
Accuracy and inference time metrics of RedNet series models are shown as follows. More detailed information can be refered toRedNet series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
RedNet26 | 0.7595 | 0.9319 | 1.7 | 9.2 | Download link | ||
RedNet38 | 0.7747 | 0.9356 | 2.2 | 12.4 | Download link | ||
RedNet50 | 0.7833 | 0.9417 | 2.7 | 15.5 | Download link | ||
RedNet101 | 0.7894 | 0.9436 | 4.7 | 25.7 | Download link | ||
RedNet152 | 0.7917 | 0.9440 | 6.8 | 34.0 | Download link |
Accuracy and inference time metrics of TNT series models are shown as follows. More detailed information can be refered toTNT series tutorial.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
TNT_small | 0.8121 | 0.9563 | 5.2 | 23.8 | Download link |
Note:The mean
and std
in NormalizeImage
in the data preprocessing part of the TNT model are both 0.5.
Accuracy and inference time metrics of AlexNet, SqueezeNet series, VGG series and DarkNet53 models are shown as follows. More detailed information can be refered to Others.
Model | Top-1 Acc | Top-5 Acc | time(ms) bs=1 |
time(ms) bs=4 |
Flops(G) | Params(M) | Download Address |
---|---|---|---|---|---|---|---|
AlexNet | 0.567 | 0.792 | 1.44993 | 2.46696 | 1.370 | 61.090 | Download link |
SqueezeNet1_0 | 0.596 | 0.817 | 0.96736 | 2.53221 | 1.550 | 1.240 | Download link |
SqueezeNet1_1 | 0.601 | 0.819 | 0.76032 | 1.877 | 0.690 | 1.230 | Download link |
VGG11 | 0.693 | 0.891 | 3.90412 | 9.51147 | 15.090 | 132.850 | Download link |
VGG13 | 0.700 | 0.894 | 4.64684 | 12.61558 | 22.480 | 133.030 | Download link |
VGG16 | 0.720 | 0.907 | 5.61769 | 16.40064 | 30.810 | 138.340 | Download link |
VGG19 | 0.726 | 0.909 | 6.65221 | 20.4334 | 39.130 | 143.650 | Download link |
DarkNet53 | 0.780 | 0.941 | 4.10829 | 12.1714 | 18.580 | 41.600 | Download link |