forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathResNet50_ReID.yaml
151 lines (143 loc) · 3.45 KB
/
ResNet50_ReID.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 120
print_batch_step: 10
use_visualdl: False
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: "./inference"
eval_mode: "retrieval"
# model architecture
Arch:
name: "RecModel"
infer_output_key: "features"
infer_add_softmax: False
Backbone:
name: "ResNet50_last_stage_stride1"
pretrained: True
BackboneStopLayer:
name: "adaptive_avg_pool2d_0"
Neck:
name: "VehicleNeck"
in_channels: 2048
out_channels: 512
Head:
name: "CircleMargin"
margin: 0.35
scale: 64
embedding_size: 512
class_num: 3000
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
- PairwiseCosface:
margin: 0.35
gamma: 64
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.04
regularizer:
name: 'L2'
coeff: 0.0001
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
image_root: "dataset/LogoDet-3K-crop/train/"
cls_label_path: "dataset/LogoDet-3K-crop/train_list.txt"
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: 224
- RandFlipImage:
flip_code: 1
- AugMix:
prob: 0.5
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.5
sampler:
name: PKSampler
batch_size: 128
sample_per_id: 2
drop_last: True
loader:
num_workers: 6
use_shared_memory: True
Eval:
Query:
dataset:
name: ImageNetDataset
image_root: "dataset/LogoDet-3K-crop/val/"
cls_label_path: "dataset/LogoDet-3K-crop/query_list.txt"
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Gallery:
dataset:
name: ImageNetDataset
image_root: "dataset/LogoDet-3K-crop/train/"
cls_label_path: "dataset/LogoDet-3K-crop/train_list.txt"
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: False
loader:
num_workers: 8
use_shared_memory: True
Metric:
Eval:
- Recallk:
topk: [1, 5]
- mAP: {}