forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatch_operators.py
222 lines (179 loc) · 7.22 KB
/
batch_operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import random
import numpy as np
from ppcls.utils import logger
from ppcls.data.preprocess.ops.fmix import sample_mask
class BatchOperator(object):
""" BatchOperator """
def __init__(self, *args, **kwargs):
pass
def _unpack(self, batch):
""" _unpack """
assert isinstance(batch, list), \
'batch should be a list filled with tuples (img, label)'
bs = len(batch)
assert bs > 0, 'size of the batch data should > 0'
#imgs, labels = list(zip(*batch))
imgs = []
labels = []
for item in batch:
imgs.append(item[0])
labels.append(item[1])
return np.array(imgs), np.array(labels), bs
def _one_hot(self, targets):
return np.eye(self.class_num, dtype="float32")[targets]
def _mix_target(self, targets0, targets1, lam):
one_hots0 = self._one_hot(targets0)
one_hots1 = self._one_hot(targets1)
return one_hots0 * lam + one_hots1 * (1 - lam)
def __call__(self, batch):
return batch
class MixupOperator(BatchOperator):
""" Mixup operator """
def __init__(self, class_num, alpha: float=1.):
"""Build Mixup operator
Args:
alpha (float, optional): The parameter alpha of mixup. Defaults to 1..
Raises:
Exception: The value of parameter is illegal.
"""
if alpha <= 0:
raise Exception(
f"Parameter \"alpha\" of Mixup should be greater than 0. \"alpha\": {alpha}."
)
if not class_num:
msg = "Please set \"Arch.class_num\" in config if use \"MixupOperator\"."
logger.error(Exception(msg))
raise Exception(msg)
self._alpha = alpha
self.class_num = class_num
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
idx = np.random.permutation(bs)
lam = np.random.beta(self._alpha, self._alpha)
imgs = lam * imgs + (1 - lam) * imgs[idx]
targets = self._mix_target(labels, labels[idx], lam)
return list(zip(imgs, targets))
class CutmixOperator(BatchOperator):
""" Cutmix operator """
def __init__(self, class_num, alpha=0.2):
"""Build Cutmix operator
Args:
alpha (float, optional): The parameter alpha of cutmix. Defaults to 0.2.
Raises:
Exception: The value of parameter is illegal.
"""
if alpha <= 0:
raise Exception(
f"Parameter \"alpha\" of Cutmix should be greater than 0. \"alpha\": {alpha}."
)
if not class_num:
msg = "Please set \"Arch.class_num\" in config if use \"CutmixOperator\"."
logger.error(Exception(msg))
raise Exception(msg)
self._alpha = alpha
self.class_num = class_num
def _rand_bbox(self, size, lam):
""" _rand_bbox """
w = size[2]
h = size[3]
cut_rat = np.sqrt(1. - lam)
cut_w = int(w * cut_rat)
cut_h = int(h * cut_rat)
# uniform
cx = np.random.randint(w)
cy = np.random.randint(h)
bbx1 = np.clip(cx - cut_w // 2, 0, w)
bby1 = np.clip(cy - cut_h // 2, 0, h)
bbx2 = np.clip(cx + cut_w // 2, 0, w)
bby2 = np.clip(cy + cut_h // 2, 0, h)
return bbx1, bby1, bbx2, bby2
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
idx = np.random.permutation(bs)
lam = np.random.beta(self._alpha, self._alpha)
bbx1, bby1, bbx2, bby2 = self._rand_bbox(imgs.shape, lam)
imgs[:, :, bbx1:bbx2, bby1:bby2] = imgs[idx, :, bbx1:bbx2, bby1:bby2]
lam = 1 - (float(bbx2 - bbx1) * (bby2 - bby1) /
(imgs.shape[-2] * imgs.shape[-1]))
targets = self._mix_target(labels, labels[idx], lam)
return list(zip(imgs, targets))
class FmixOperator(BatchOperator):
""" Fmix operator """
def __init__(self,
class_num,
alpha=1,
decay_power=3,
max_soft=0.,
reformulate=False):
if not class_num:
msg = "Please set \"Arch.class_num\" in config if use \"FmixOperator\"."
logger.error(Exception(msg))
raise Exception(msg)
self._alpha = alpha
self._decay_power = decay_power
self._max_soft = max_soft
self._reformulate = reformulate
self.class_num = class_num
def __call__(self, batch):
imgs, labels, bs = self._unpack(batch)
idx = np.random.permutation(bs)
size = (imgs.shape[2], imgs.shape[3])
lam, mask = sample_mask(self._alpha, self._decay_power, \
size, self._max_soft, self._reformulate)
imgs = mask * imgs + (1 - mask) * imgs[idx]
targets = self._mix_target(labels, labels[idx], lam)
return list(zip(imgs, targets))
class OpSampler(object):
""" Sample a operator from """
def __init__(self, class_num, **op_dict):
"""Build OpSampler
Raises:
Exception: The parameter \"prob\" of operator(s) are be set error.
"""
if not class_num:
msg = "Please set \"Arch.class_num\" in config if use \"OpSampler\"."
logger.error(Exception(msg))
raise Exception(msg)
if len(op_dict) < 1:
msg = f"ConfigWarning: No operator in \"OpSampler\". \"OpSampler\" has been skipped."
logger.warning(msg)
self.ops = {}
total_prob = 0
for op_name in op_dict:
param = op_dict[op_name]
if "prob" not in param:
msg = f"ConfigWarning: Parameter \"prob\" should be set when use operator in \"OpSampler\". The operator \"{op_name}\"'s prob has been set \"0\"."
logger.warning(msg)
prob = param.pop("prob", 0)
total_prob += prob
param.update({"class_num": class_num})
op = eval(op_name)(**param)
self.ops.update({op: prob})
if total_prob > 1:
msg = f"ConfigError: The total prob of operators in \"OpSampler\" should be less 1."
logger.error(Exception(msg))
raise Exception(msg)
# add "None Op" when total_prob < 1, "None Op" do nothing
self.ops[None] = 1 - total_prob
def __call__(self, batch):
op = random.choices(
list(self.ops.keys()), weights=list(self.ops.values()), k=1)[0]
# return batch directly when None Op
return op(batch) if op else batch