forked from PaddlePaddle/PaddleClas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgooglenetloss.py
41 lines (35 loc) · 1.49 KB
/
googlenetloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
class GoogLeNetLoss(nn.Layer):
"""
Cross entropy loss used after googlenet
"""
def __init__(self, epsilon=None):
super().__init__()
assert (epsilon is None or epsilon <= 0 or epsilon >= 1), "googlenet is not support label_smooth"
def forward(self, inputs, label):
input0, input1, input2 = inputs
if isinstance(input0, dict):
input0 = input0["logits"]
if isinstance(input1, dict):
input1 = input1["logits"]
if isinstance(input2, dict):
input2 = input2["logits"]
loss0 = F.cross_entropy(input0, label=label, soft_label=False)
loss1 = F.cross_entropy(input1, label=label, soft_label=False)
loss2 = F.cross_entropy(input2, label=label, soft_label=False)
loss = loss0 + 0.3 * loss1 + 0.3 * loss2
loss = loss.mean()
return {"GooleNetLoss": loss}