-
Prepare Three levels SR Models. You can download the [SRResNet (SRResNet_bicx4_in3nf64nb16.pth), SRGAN (SRGAN.pth), ESRGAN (ESRGAN_SuperSR.pth)] from Google Drive or Baidu Drive. You could place them in
./experiments/pretrained_models/
. -
Download DIV2K and Flickr2K from Google Drive or Baidu Drive
-
Generate Three level images using 'How to test' with
codes/options/test/test_RankSRGAN.yml
- Training dataset: Use
./datasets/generate_rankdataset/generate_rankdataset.m
to generate three level training patchs. - Validation dataset: Use
./datasets/generate_rankdataset/move_valid.py
to generate three level patchs. - Rank label: Use
./datasets/generate_rankdataset/generate_train_ranklabel.m
to generate Training Rank label (NIQE). Use./datasets/generate_rankdataset/generate_valid_ranklabel.m
to generate Validation Rank label (NIQE).