forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rtmdet_tiny_8xb32-300e_coco.py
43 lines (39 loc) · 1.4 KB
/
rtmdet_tiny_8xb32-300e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
_base_ = './rtmdet_s_8xb32-300e_coco.py'
checkpoint = 'https://download.openmmlab.com/mmdetection/v3.0/rtmdet/cspnext_rsb_pretrain/cspnext-tiny_imagenet_600e.pth' # noqa
model = dict(
backbone=dict(
deepen_factor=0.167,
widen_factor=0.375,
init_cfg=dict(
type='Pretrained', prefix='backbone.', checkpoint=checkpoint)),
neck=dict(in_channels=[96, 192, 384], out_channels=96, num_csp_blocks=1),
bbox_head=dict(in_channels=96, feat_channels=96, exp_on_reg=False))
train_pipeline = [
dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='CachedMosaic',
img_scale=(640, 640),
pad_val=114.0,
max_cached_images=20,
random_pop=False),
dict(
type='RandomResize',
scale=(1280, 1280),
ratio_range=(0.5, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=(640, 640)),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
dict(
type='CachedMixUp',
img_scale=(640, 640),
ratio_range=(1.0, 1.0),
max_cached_images=10,
random_pop=False,
pad_val=(114, 114, 114),
prob=0.5),
dict(type='PackDetInputs')
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))