-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfedavg_demo.py
61 lines (49 loc) · 1.78 KB
/
fedavg_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from functools import reduce
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor
from fedmind.algs.fedavg import FedAvg
from fedmind.config import get_config
from fedmind.data import ClientDataset
def test_fedavg():
# 0. Prepare necessary arguments
args = get_config("config.yaml")
if args.SEED >= 0:
torch.manual_seed(args.SEED)
# 1. Prepare Federated Learning DataSets
org_ds = MNIST("dataset", train=True, download=True, transform=ToTensor())
test_ds = MNIST("dataset", train=False, download=True, transform=ToTensor())
effective_size = len(org_ds) - len(org_ds) % args.NUM_CLIENT
idx_groups = torch.randperm(effective_size).reshape(args.NUM_CLIENT, -1)
fed_dss = [ClientDataset(org_ds, idx) for idx in idx_groups.tolist()]
genetors = [
torch.Generator().manual_seed(args.SEED + i) if args.SEED >= 0 else None
for i in range(args.NUM_CLIENT)
]
fed_loader = [
DataLoader(ds, args.BATCH_SIZE, shuffle=True, generator=gtr)
for ds, gtr in zip(fed_dss, genetors)
]
test_loader = DataLoader(test_ds, args.BATCH_SIZE * 4)
# 2. Prepare Model and Criterion
classes = 10
features = reduce(lambda x, y: x * y, org_ds[0][0].shape)
model = nn.Sequential(
nn.Flatten(),
nn.Linear(features, 32),
nn.ReLU(),
nn.Linear(32, classes),
)
criterion = nn.CrossEntropyLoss()
# 3. Run Federated Learning Simulation
FedAvg(
model=model,
fed_loader=fed_loader,
test_loader=test_loader,
criterion=criterion,
args=args,
).fit(args.NUM_CLIENT, args.ACTIVE_CLIENT, args.SERVER_EPOCHS)
if __name__ == "__main__":
test_fedavg()