-
Notifications
You must be signed in to change notification settings - Fork 52
/
QTideEffect.cpp
452 lines (419 loc) · 16.6 KB
/
QTideEffect.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
#include "QTideEffect.h"
const double QTideEffect::args[][5]={
{1.40519E-4, 2.0,-2.0, 0.0, 0.00}, /* M2 */
{1.45444E-4, 0.0, 0.0, 0.0, 0.00}, /* S2 */
{1.37880E-4, 2.0,-3.0, 1.0, 0.00}, /* N2 */
{1.45842E-4, 2.0, 0.0, 0.0, 0.00}, /* K2 */
{0.72921E-4, 1.0, 0.0, 0.0, 0.25}, /* K1 */
{0.67598E-4, 1.0,-2.0, 0.0,-0.25}, /* O1 */
{0.72523E-4,-1.0, 0.0, 0.0,-0.25}, /* P1 */
{0.64959E-4, 1.0,-3.0, 1.0,-0.25}, /* Q1 */
{0.53234E-5, 0.0, 2.0, 0.0, 0.00}, /* Mf */
{0.26392E-5, 0.0, 1.0,-1.0, 0.00}, /* Mm */
{0.03982E-5, 2.0, 0.0, 0.0, 0.00} /* Ssa */
};
void QTideEffect::initVar()
{
//Initialize the star GM parameter
m_GMi[0] = 3.986004415e14;
m_GMi[1] = 4.9027890e12;
m_GMi[2] = 1.3271250e20;
//Love and Shadi parameters
loveShida2[0] = 0;loveShida2[1] = 0;
isgetLoveShida2 = false;
loveShida3[0] = 0.2920;loveShida3[1] = 0.0150;
m_SationBLH[0] = 0;m_SationBLH[1] = 0;m_SationBLH[2] = 0;
//Initialize erp_t data
m_erpData.n = 0;
m_erpData.nmax = 10;
m_erpData.data = (erpd_t*)malloc(sizeof(erpd_t)*m_erpData.nmax);
isPoleEffect = true;
isSolidTide = true;
isOCEANTide = true;
m_SecondFlag = -1;
m_AllTideENU[0] = 0;m_AllTideENU[1] = 0;m_AllTideENU[2] = 0;
for (int i = 0;i < 3;i++)
{
m_pSolidENU[i] = 0;m_pPoleENU[i] = 0;m_pOCEANENU[i] = 0;
m_sunpos[i] = 0;m_moonpos[i] = 0;
}
m_gmst = 0;isGetPos = false;
for (int i = 0;i < 5;i++)
m_erpV[i] = 0;
isReadErp = false;
isReadOCEAN = false;
LeapSeconds = 0;
m_OCEANFileName = "OCEAN-GOT48.blq";
m_erpFileName = "";
m_OCEANData.isRead = false;//unavailable
m_StationName = "";
}
//Set sun, moon, gmst data
void QTideEffect::setSunMoonPos(double *psun,double *pmoon,double gmst/* =0 */)
{
for (int i = 0;i < 3;i++)
{
m_sunpos[i] = psun[i];
m_moonpos[i] = pmoon[i];
}
m_gmst = gmst;
isGetPos = true;
}
//Set station name for extreme tide search data
void QTideEffect::setStationName(QString StationName /* = "" */)
{
if(!StationName.isEmpty()) m_StationName = StationName.mid(0,4).trimmed();// Debug by xiaogongwei 2019.03.13
}
//Incoming ocean data, erp file path, otherwise search from the current directory, otherwise it will not apply to ocean tides and extreme tide correction
QTideEffect::QTideEffect(QString OCEANFileName,QString erpFileName)
{
initVar();
if(!erpFileName.isEmpty()) m_erpFileName = erpFileName.trimmed();
if(!OCEANFileName.isEmpty()) m_OCEANFileName = OCEANFileName.trimmed();
}
//Incoming ocean data, erp file path, otherwise search from the current directory, otherwise it will not apply to ocean tides and extreme tide correction
void QTideEffect::setTideFileName(QString OCEANFileName,QString erpFileName)
{
initVar();
if(!erpFileName.isEmpty()) m_erpFileName = erpFileName.trimmed();
if(!OCEANFileName.isEmpty()) m_OCEANFileName = OCEANFileName.trimmed();
}
QTideEffect::~QTideEffect(void)
{
if(m_erpData.data != NULL) free(m_erpData.data);
}
bool QTideEffect::readRepFile()
{
if (isReadErp) return true;
if (!m_erpFileName.isEmpty())
{//First determine if the user is passing the erp path
isReadErp = m_cmpClass.readerp(m_erpFileName.toLatin1().data(),&m_erpData);
if (isReadErp)
isPoleEffect = true;
else
isPoleEffect = false;
}
else
{
isReadErp = false;
isPoleEffect = false;
}
return isReadErp;
}
//double *erpv O erp values {xp,yp,ut1_utc,lod} (rad,rad,s,s/d)
bool QTideEffect::getErpV(gtime_t obsGPST,double *erpV)
{
if(!m_cmpClass.geterp(&m_erpData,obsGPST,erpV)) return false;
return true;
}
void QTideEffect::tide_pole(const double *pos, const double *erpv, double *denu)
{
double xp,yp,cosl,sinl;
//trace(3,"tide_pole: pos=%.3f %.3f\n",pos[0]*R2D,pos[1]*R2D);
xp=erpv[0]/AS2R; /* rad -> arcsec */
yp=erpv[1]/AS2R;
cosl=cos(pos[1]); sinl=sin(pos[1]);
denu[0]= 9E-3*sin(pos[0]) *(xp*sinl+yp*cosl);
denu[1]= -9E-3*cos(2.0*pos[0])*(xp*cosl-yp*sinl);
denu[2]=-32E-3*sin(2.0*pos[0])*(xp*cosl-yp*sinl);
}
//Provides a very humid interface, the day will not change, as long as the BLH is accurate, pay attention to the code to reduce the amount of calculation
void QTideEffect::getPoleTide(int Year,int Month,int Day,int Hours,int Minuts,double Seconds,double *pBLH,double *pTideENU)
{
pTideENU[0] = 0;pTideENU[1] = 0;pTideENU[2] = 0;
if (!isPoleEffect) return ;
double tSeconds = 0;
int tWeek;
gtime_t obsGPST;
pTideENU[0] = 0;pTideENU[1] = 0;pTideENU[2] = 0;
tSeconds = m_cmpClass.YMD2GPSTime(Year,Month,Day,Hours,Minuts,Seconds,&tWeek);
obsGPST = m_cmpClass.gpst2time(tWeek,Seconds);
//Get erp parameter
//if (!isgetErpV)
if(!getErpV(obsGPST,m_erpV))
for (int i = 0;i < 5;i++)
m_erpV[i] = 0;
//Calculate the extreme tide
tide_pole(pBLH,m_erpV,pTideENU);
}
void QTideEffect::subSolidTide(double *sunmoonPos,double *pXYZ,double *pTideXYZ,int flag)
{//Seeking a second tide
//Seeking a second tide
double esunmoon[3]={0},erec[3]={0};//Sun or moon, unit vector of station
double lensunmoon = 0,lenrec = 0;
//Find the length of the vector
lensunmoon = m_cmpClass.norm(sunmoonPos,3);
lenrec = m_cmpClass.norm(pXYZ,3);
//Unitization
for (int i = 0; i < 3;i++)
{
esunmoon[i] = sunmoonPos[i]/lensunmoon;
erec[i] = pXYZ[i]/lenrec;
}
//Secondary solid tide effect
if (flag<0||flag>1 ) return;
double GMe = m_GMi[0],GMj = m_GMi[flag+1];//Get celestial gravity parameters
double K1 = 0,K2 = 0,K3 = 0,dotsunRec = 0;
dotsunRec = m_cmpClass.dot(esunmoon,erec,3);
double R_earth = 6378136;// r of earth unit m
K1 = GMj*R_earth*R_earth*R_earth*R_earth/(GMe*lensunmoon*lensunmoon*lensunmoon);
K1 = GMj*lenrec*lenrec*lenrec*lenrec/(GMe*lensunmoon*lensunmoon*lensunmoon);
K2 = 3*loveShida2[1]*dotsunRec;
K3 = 3*(loveShida2[0]/2 - loveShida2[1])*(dotsunRec*dotsunRec) - loveShida2[0]/2;
pTideXYZ[0] = K1*(K2*esunmoon[0] + K3*erec[0]);
pTideXYZ[1] = K1*(K2*esunmoon[1] + K3*erec[1]);
pTideXYZ[2] = K1*(K2*esunmoon[2] + K3*erec[2]);
}
void QTideEffect::getSoildTide(int Year,int Month,int Day,int Hours,int Minuts,double Seconds,double *pXYZ,double *pTideENU,bool isElimate/* = false*/)
{
pTideENU[0] = 0;pTideENU[1] = 0;pTideENU[2] = 0;
if (!isSolidTide) return ;
double sunpos[3]={0},moonpos[3] = {0},gmst = 0;
double pBLH[3] = {0},pmoon2XYZ[3] = {0},psun2XYZ[3]={0},pmoon3XYZ[3] = {0},sinb2 = 0;
//As the station calculation accuracy increases, BLH also needs to be updated in real time (increased calculation amount)
m_cmpClass.XYZ2BLH(pXYZ,pBLH);
m_SationBLH[0] = pBLH[0];m_SationBLH[1] = pBLH[1];m_SationBLH[2] = pBLH[2];
sinb2 = ( 3*qSin(pBLH[0])*qSin(pBLH[0]) - 1 )/2;
loveShida2[0] = 0.6078 - 0.0006*sinb2;
loveShida2[1] = 0.0847 + 0.0002*sinb2;
if (isGetPos)//External incoming sun and moon data
{
sunpos[0] = m_sunpos[0];sunpos[1] = m_sunpos[1];sunpos[2] = m_sunpos[2];
moonpos[0] = m_moonpos[0];moonpos[1] = m_moonpos[1];moonpos[2] = m_moonpos[2];
gmst = m_gmst;
}
else
m_cmpClass.getSunMoonPos(Year,Month,Day,Hours,Minuts,Seconds,sunpos,moonpos,&gmst);
//Secondary solid tide calculation
subSolidTide(moonpos,pXYZ,pmoon2XYZ,0);//moon
subSolidTide(sunpos,pXYZ,psun2XYZ,1);//sun
//Three solid tides only consider the moon U and N directions
double emoon[3] = {0},erec[3] = {0};
double lenmoon = 0,lenrec = 0;
double K1 = 0,K2 = 0,K3 = 0,dotmoonRec = 0;
double GMe = m_GMi[0],GMm = m_GMi[1];//Get celestial gravity parameters
lenmoon = m_cmpClass.norm(moonpos,3);
lenrec = m_cmpClass.norm(pXYZ,3);
//Unitization
for (int i = 0; i < 3;i++)
{
emoon[i] = moonpos[i]/lenmoon;
erec[i] = pXYZ[i]/lenrec;
}
dotmoonRec = m_cmpClass.dot(emoon,erec,3);
K1 = GMm*lenrec*lenrec*lenrec*lenrec*lenrec/(GMe*lenmoon*lenmoon*lenmoon*lenmoon);
K2 = loveShida3[1]*( 7.5*dotmoonRec*dotmoonRec - 1.5);
K3 = 2.5*(loveShida3[0] - 3*loveShida3[1])*dotmoonRec*dotmoonRec*dotmoonRec + 1.5*(loveShida3[1] - loveShida3[0])*dotmoonRec;
pmoon3XYZ[0] = K1*(K3*erec[0] + K2*emoon[0]);
pmoon3XYZ[1] = K1*(K3*erec[1] + K2*emoon[1]);
pmoon3XYZ[2] = K1*(K3*erec[2] + K2*emoon[2]);
//Influence result overlay
double pTideXYZ[3]={0};
pTideXYZ[0] = pmoon2XYZ[0] + psun2XYZ[0] + pmoon3XYZ[0];
pTideXYZ[1] = pmoon2XYZ[1] + psun2XYZ[1] + pmoon3XYZ[1];
pTideXYZ[2] = pmoon2XYZ[2] + psun2XYZ[2] + pmoon3XYZ[2];
/* step2: frequency domain, only K1 radial */
double sin2l=qSin(2.0*m_SationBLH[0]);
double du=-0.012*sin2l*qSin(gmst+m_SationBLH[1]);
pTideXYZ[0] += du*erec[0];pTideXYZ[1] += du*erec[1];pTideXYZ[2] += du*erec[2];
//Component elimination of constant tidal deformation requires projection to vertical and north directions
if (isElimate)
{
double dltaU = 0,dltaN = 0;
double eN[3]= {-qSin(m_SationBLH[0])*qCos(m_SationBLH[1]),-qSin(m_SationBLH[0])*qSin(m_SationBLH[1]),qCos(m_SationBLH[0])};
dltaU = -0.0603*(3*qSin(m_SationBLH[0])*qSin(m_SationBLH[0]) - 1);
dltaN = -0.0252*qSin(2*m_SationBLH[0]);
pTideXYZ[0]-= (dltaU*erec[0] + dltaN*eN[0]);
pTideXYZ[1]-= (dltaU*erec[1] + dltaN*eN[1]);
pTideXYZ[2]-= (dltaU*erec[2] + dltaN*eN[2]);
}
//Convert ENU direction
//Convert pTideXYZ to station coordinates ENU direction
pTideXYZ[0]+=pXYZ[0];pTideXYZ[1]+=pXYZ[1];pTideXYZ[2]+=pXYZ[2];
m_cmpClass.XYZ2ENU(pTideXYZ,pTideENU,pXYZ);
}
//void Read the tide file (you can only read the data of the IGS station, you can not read any other point, you can also replace the receiver name with the adjacent station)
bool QTideEffect::readOCEANFile(QString StationName,OCEANData &oceaData,QString OCEANFileName)
{
if (isReadOCEAN) return true;
OCEANData tempOCEANData;
tempOCEANData.isRead = false;
oceaData.isRead = false;
StationName = StationName.trimmed();//Eliminate the file name space, and the file name in the form of a space becomes empty
StationName = StationName.toUpper();
if (StationName.isEmpty())
if (!m_StationName.isEmpty())
StationName = m_StationName;
else
{
isOCEANTide = false;
return false;
}
//Eliminate the file name space, and the file name in the form of a space becomes empty.
//Search current directory .blq file
QDir m_dir(".");
QStringList m_fliterList;
//Search current directory .blq file
m_fliterList.append("*.blq");
QStringList OCEANFileNameList = m_dir.entryList(m_fliterList);
QString dirOCEANfileName ="";
if (!OCEANFileNameList.isEmpty())
dirOCEANfileName = OCEANFileNameList.at(0);\
if (OCEANFileName.isEmpty())
{
if (!m_OCEANFileName.isEmpty())
OCEANFileName = m_OCEANFileName;
else if (!dirOCEANfileName.isEmpty())
OCEANFileName = dirOCEANfileName;
else
return false;
}
m_readOCEANClass.setFileName(OCEANFileName);
if(!m_readOCEANClass.open(QFile::ReadOnly))
{
ErroTrace("QTideEffect::readOCEANFile, Can not open BLQ file.");
isReadOCEAN = true;
return false;
}
//Skip header file
QString tempLine="";
while (!tempLine.contains("END") && !m_readOCEANClass.atEnd())
tempLine = m_readOCEANClass.readLine();
//Read data start symbol($$)
QString tempStationName;
while (!m_readOCEANClass.atEnd())
{
//2-6 per line is empty, it means the data will start "$$" and the length is 4
while (0 != tempLine.trimmed().compare("$$"))
{
tempLine = m_readOCEANClass.readLine();
if (m_readOCEANClass.atEnd())
{
isOCEANTide = false;
oceaData.isRead = false;
break;
}
}
//Read station data Name
tempLine = m_readOCEANClass.readLine();//Read Station name line
tempStationName = tempLine.mid(2,4).trimmed().toUpper();
if (tempStationName != StationName){
tempLine = m_readOCEANClass.readLine();//Read line
if (m_readOCEANClass.atEnd())
{
isOCEANTide = false;
oceaData.isRead = false;
break;
}
continue;
}
//Find the station
tempOCEANData.StationName = tempStationName;
//Skip comments (can read station BLH, not read here)
tempLine = m_readOCEANClass.readLine();//Read comment
while (tempLine.mid(0,2).contains("$"))
tempLine = m_readOCEANClass.readLine();//Read comment
//Analytical data
for (int i = 0;i < 6;i++)
{
for (int j = 0;j < 11;j++)
{
if (i < 3)
tempOCEANData.amp[i][j] = tempLine.mid(2+j*7,6).toDouble();
else
tempOCEANData.phasedats[i-3][j] = tempLine.mid(2+j*7,6).toDouble();
}
tempLine = m_readOCEANClass.readLine();//Read comment
}
tempOCEANData.isRead = true;
break;//Read out data
}
isReadOCEAN = true;//I have read the file and cannot be sure that the station data was found.
oceaData = tempOCEANData;//save data
if (tempOCEANData.isRead = false) isOCEANTide = false;
m_readOCEANClass.close();
return true;
}
//Calculate the impact of the tide
void QTideEffect::getOCEANTide(int Year,int Month,int Day,int Hours,int Minuts,double Seconds,double *pXYZ,double *pTideENU,QString StationName)
{
pTideENU[0]=0;pTideENU[1]=0;pTideENU[2]=0;
if (!isReadOCEAN)
if (!readOCEANFile(StationName,m_OCEANData,m_OCEANFileName))
return ;
if (!m_OCEANData.isRead) return ; //Determine if the data has been read and is available
//Reference RTKLIB ARG
const double ep1975[]={1975,1,1,0,0,0};
double ep[6] = {0},fday = 0,days = 0,t = 0,t2 = 0,t3 = 0,a[5] = {0},ang = 0,dp[3]={0};
int i = 0,j = 0;
/* angular argument: see subroutine arg.f for reference [1] */
//m_cmpClass.time2epoch(tut,ep);
//UT1 used by RTKLIB tut requires erp to increase the amount of computation for the file. UT1 is ignored here and can be obtained using the getErp function.
ep[0] = Year;ep[1] = Month;ep[2] = Day;ep[3] = Hours;ep[4] = Minuts;ep[5] = Seconds;
//Convert to UTC time
if (LeapSeconds <= 0)//Jump seconds are only obtained once, which is a number greater than zero
LeapSeconds = m_cmpClass.getLeapSecond(Year,Month,Day,Hours,Minuts,Seconds);
ep[5]-=LeapSeconds;
fday=ep[3]*3600.0+ep[4]*60.0+ep[5];
ep[3]=ep[4]=ep[5]=0.0;
days=m_cmpClass.timediff(m_cmpClass.epoch2time(ep),m_cmpClass.epoch2time(ep1975))/86400.0;
t=(27392.500528+1.000000035*days)/36525.0;
t2=t*t; t3=t2*t;
a[0]=fday;
a[1]=(279.69668+36000.768930485*t+3.03E-4*t2)*D2R; /* H0 */
a[2]=(270.434358+481267.88314137*t-0.001133*t2+1.9E-6*t3)*D2R; /* S0 */
a[3]=(334.329653+4069.0340329577*t+0.010325*t2-1.2E-5*t3)*D2R; /* P0 */
a[4]=2.0*MM_PI;
/* displacements by 11 constituents */
for (i=0;i<11;i++) {
ang=0.0;
for (j=0;j<5;j++) ang+=a[j]*args[i][j];
for (j=0;j<3;j++) dp[j]+=m_OCEANData.amp[j][i]*cos(ang-m_OCEANData.phasedats[j][i]*D2R);
}
pTideENU[0]=-dp[1];
pTideENU[1]=-dp[2];
pTideENU[2]= dp[0];
}
//Get the impact of all tides on the ENU direction
void QTideEffect::getAllTideEffectENU(int Year,int Month,int Day,int Hours,int Minuts,double Seconds,double *pXYZ,double *pENU,double *psunpos/* =NULL */, double *pmoonpos /* = NULL */,double gmst /* = 0 */,QString StationName /* = "" */)
{
pENU[0] = 0;pENU[1] = 0;pENU[2] = 0;
isGetPos = false;
if (psunpos&&pmoonpos)
setSunMoonPos(psunpos,pmoonpos,gmst);
//Get a tide of solids
getSoildTide(Year,Month,Day,Hours,Minuts,Seconds,pXYZ,m_pSolidENU);//Adopt default does not consider permanent corrosion
//Get the ocean tide
if (!StationName.isEmpty())
getOCEANTide(Year,Month,Day,Hours,Minuts,Seconds,pXYZ,m_pOCEANENU,StationName);
else if (!m_StationName.isEmpty())
getOCEANTide(Year,Month,Day,Hours,Minuts,Seconds,pXYZ,m_pOCEANENU,m_StationName);
//Get the tide
getPoleTide(Year,Month,Day,Hours,Minuts,Seconds,m_SationBLH,m_pPoleENU);
//Tidal effect superposition
pENU[0] = m_pSolidENU[0] + m_pOCEANENU[0] + m_pPoleENU[0];
pENU[1] = m_pSolidENU[1] + m_pOCEANENU[1] + m_pPoleENU[1];
pENU[2] = m_pSolidENU[2] + m_pOCEANENU[2] + m_pPoleENU[2];
}
double QTideEffect::getAllTideEffect(int Year,int Month,int Day,int Hours,int Minuts,double Seconds,
double *pXYZ,double *EA,double *psunpos, double *pmoonpos,double gmst,QString StationName)
{
double effectDistance = 0;
isGetPos = false;
if (qAbs(m_SecondFlag - (Hours*3600+Minuts*60+Seconds)) > 0.3)//Two differences greater than 0.3s are considered to replace the epoch to recalculate the sun coordinates (a single epoch does not repeatedly calculate the sun coordinates)
{
if(psunpos&&pmoonpos)
setSunMoonPos(psunpos,pmoonpos,gmst);
else
m_cmpClass.getSunMoonPos(Year,Month,Day,Hours,Minuts,Seconds,m_sunpos,m_moonpos,&m_gmst);//An epoch only needs to be calculated once, no need to calculate multiple times
getAllTideEffectENU(Year,Month,Day,Hours,Minuts,Seconds,pXYZ,m_AllTideENU,m_sunpos,m_moonpos,m_gmst,StationName);
m_SecondFlag = Hours*3600+Minuts*60+Seconds;
}
effectDistance = m_AllTideENU[0]*qCos(EA[0])*qSin(EA[1]) + m_AllTideENU[1]*qCos(EA[0])*qCos(EA[1]) + m_AllTideENU[2]*qSin(EA[0]);
return effectDistance;
}
void QTideEffect::getAllData()
{
readRepFile();//Read erp file to variable during initialization m_erpData
readOCEANFile(m_StationName,m_OCEANData,m_OCEANFileName);
}