-
Notifications
You must be signed in to change notification settings - Fork 0
/
Winter Term Practicum Presentation - Xiao Yan.html
1400 lines (1294 loc) · 85.3 KB
/
Winter Term Practicum Presentation - Xiao Yan.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en"><head>
<script src="Winter Term Practicum Presentation - Xiao Yan_files/libs/clipboard/clipboard.min.js"></script>
<script src="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-html/tabby.min.js"></script>
<script src="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-html/popper.min.js"></script>
<script src="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-html/tippy.umd.min.js"></script>
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-html/tippy.css" rel="stylesheet">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-html/light-border.css" rel="stylesheet">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-html/quarto-html.min.css" rel="stylesheet" data-mode="light">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles"><meta charset="utf-8">
<meta name="generator" content="quarto-1.4.542">
<meta name="author" content="Xiao Yan | Supervisor: Kuan Liu">
<title>Bayesian Marginal Structural Models</title>
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/dist/reset.css">
<link rel="stylesheet" href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/dist/reveal.css">
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ color: #003b4f; background-color: #f1f3f5; }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span { color: #003b4f; } /* Normal */
code span.al { color: #ad0000; } /* Alert */
code span.an { color: #5e5e5e; } /* Annotation */
code span.at { color: #657422; } /* Attribute */
code span.bn { color: #ad0000; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #003b4f; } /* ControlFlow */
code span.ch { color: #20794d; } /* Char */
code span.cn { color: #8f5902; } /* Constant */
code span.co { color: #5e5e5e; } /* Comment */
code span.cv { color: #5e5e5e; font-style: italic; } /* CommentVar */
code span.do { color: #5e5e5e; font-style: italic; } /* Documentation */
code span.dt { color: #ad0000; } /* DataType */
code span.dv { color: #ad0000; } /* DecVal */
code span.er { color: #ad0000; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #ad0000; } /* Float */
code span.fu { color: #4758ab; } /* Function */
code span.im { color: #00769e; } /* Import */
code span.in { color: #5e5e5e; } /* Information */
code span.kw { color: #003b4f; } /* Keyword */
code span.op { color: #5e5e5e; } /* Operator */
code span.ot { color: #003b4f; } /* Other */
code span.pp { color: #ad0000; } /* Preprocessor */
code span.sc { color: #5e5e5e; } /* SpecialChar */
code span.ss { color: #20794d; } /* SpecialString */
code span.st { color: #20794d; } /* String */
code span.va { color: #111111; } /* Variable */
code span.vs { color: #20794d; } /* VerbatimString */
code span.wa { color: #5e5e5e; font-style: italic; } /* Warning */
</style>
<link rel="stylesheet" href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/dist/theme/quarto.css">
<link rel="stylesheet" href="styles.css">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.css" rel="stylesheet">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/plugin/reveal-menu/menu.css" rel="stylesheet">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/plugin/reveal-menu/quarto-menu.css" rel="stylesheet">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/plugin/reveal-chalkboard/font-awesome/css/all.css" rel="stylesheet">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/plugin/reveal-chalkboard/style.css" rel="stylesheet">
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/plugin/quarto-support/footer.css" rel="stylesheet">
<style type="text/css">
.callout {
margin-top: 1em;
margin-bottom: 1em;
border-radius: .25rem;
}
.callout.callout-style-simple {
padding: 0em 0.5em;
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
display: flex;
}
.callout.callout-style-default {
border-left: solid #acacac .3rem;
border-right: solid 1px silver;
border-top: solid 1px silver;
border-bottom: solid 1px silver;
}
.callout .callout-body-container {
flex-grow: 1;
}
.callout.callout-style-simple .callout-body {
font-size: 1rem;
font-weight: 400;
}
.callout.callout-style-default .callout-body {
font-size: 0.9rem;
font-weight: 400;
}
.callout.callout-titled.callout-style-simple .callout-body {
margin-top: 0.2em;
}
.callout:not(.callout-titled) .callout-body {
display: flex;
}
.callout:not(.no-icon).callout-titled.callout-style-simple .callout-content {
padding-left: 1.6em;
}
.callout.callout-titled .callout-header {
padding-top: 0.2em;
margin-bottom: -0.2em;
}
.callout.callout-titled .callout-title p {
margin-top: 0.5em;
margin-bottom: 0.5em;
}
.callout.callout-titled.callout-style-simple .callout-content p {
margin-top: 0;
}
.callout.callout-titled.callout-style-default .callout-content p {
margin-top: 0.7em;
}
.callout.callout-style-simple div.callout-title {
border-bottom: none;
font-size: .9rem;
font-weight: 600;
opacity: 75%;
}
.callout.callout-style-default div.callout-title {
border-bottom: none;
font-weight: 600;
opacity: 85%;
font-size: 0.9rem;
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-default div.callout-content {
padding-left: 0.5em;
padding-right: 0.5em;
}
.callout.callout-style-simple .callout-icon::before {
height: 1rem;
width: 1rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 1rem 1rem;
}
.callout.callout-style-default .callout-icon::before {
height: 0.9rem;
width: 0.9rem;
display: inline-block;
content: "";
background-repeat: no-repeat;
background-size: 0.9rem 0.9rem;
}
.callout-title {
display: flex
}
.callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
.callout.no-icon::before {
display: none !important;
}
.callout.callout-titled .callout-body > .callout-content > :last-child {
padding-bottom: 0.5rem;
margin-bottom: 0;
}
.callout.callout-titled .callout-icon::before {
margin-top: .5rem;
padding-right: .5rem;
}
.callout:not(.callout-titled) .callout-icon::before {
margin-top: 1rem;
padding-right: .5rem;
}
/* Callout Types */
div.callout-note {
border-left-color: #4582ec !important;
}
div.callout-note .callout-icon::before {
background-image: url('');
}
div.callout-note.callout-style-default .callout-title {
background-color: #dae6fb
}
div.callout-important {
border-left-color: #d9534f !important;
}
div.callout-important .callout-icon::before {
background-image: url('');
}
div.callout-important.callout-style-default .callout-title {
background-color: #f7dddc
}
div.callout-warning {
border-left-color: #f0ad4e !important;
}
div.callout-warning .callout-icon::before {
background-image: url('');
}
div.callout-warning.callout-style-default .callout-title {
background-color: #fcefdc
}
div.callout-tip {
border-left-color: #02b875 !important;
}
div.callout-tip .callout-icon::before {
background-image: url('');
}
div.callout-tip.callout-style-default .callout-title {
background-color: #ccf1e3
}
div.callout-caution {
border-left-color: #fd7e14 !important;
}
div.callout-caution .callout-icon::before {
background-image: url('');
}
div.callout-caution.callout-style-default .callout-title {
background-color: #ffe5d0
}
</style>
<style type="text/css">
.reveal div.sourceCode {
margin: 0;
overflow: auto;
}
.reveal div.hanging-indent {
margin-left: 1em;
text-indent: -1em;
}
.reveal .slide:not(.center) {
height: 100%;
}
.reveal .slide.scrollable {
overflow-y: auto;
}
.reveal .footnotes {
height: 100%;
overflow-y: auto;
}
.reveal .slide .absolute {
position: absolute;
display: block;
}
.reveal .footnotes ol {
counter-reset: ol;
list-style-type: none;
margin-left: 0;
}
.reveal .footnotes ol li:before {
counter-increment: ol;
content: counter(ol) ". ";
}
.reveal .footnotes ol li > p:first-child {
display: inline-block;
}
.reveal .slide ul,
.reveal .slide ol {
margin-bottom: 0.5em;
}
.reveal .slide ul li,
.reveal .slide ol li {
margin-top: 0.4em;
margin-bottom: 0.2em;
}
.reveal .slide ul[role="tablist"] li {
margin-bottom: 0;
}
.reveal .slide ul li > *:first-child,
.reveal .slide ol li > *:first-child {
margin-block-start: 0;
}
.reveal .slide ul li > *:last-child,
.reveal .slide ol li > *:last-child {
margin-block-end: 0;
}
.reveal .slide .columns:nth-child(3) {
margin-block-start: 0.8em;
}
.reveal blockquote {
box-shadow: none;
}
.reveal .tippy-content>* {
margin-top: 0.2em;
margin-bottom: 0.7em;
}
.reveal .tippy-content>*:last-child {
margin-bottom: 0.2em;
}
.reveal .slide > img.stretch.quarto-figure-center,
.reveal .slide > img.r-stretch.quarto-figure-center {
display: block;
margin-left: auto;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-left,
.reveal .slide > img.r-stretch.quarto-figure-left {
display: block;
margin-left: 0;
margin-right: auto;
}
.reveal .slide > img.stretch.quarto-figure-right,
.reveal .slide > img.r-stretch.quarto-figure-right {
display: block;
margin-left: auto;
margin-right: 0;
}
</style>
<script src="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-diagram/mermaid.min.js"></script>
<script src="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-diagram/mermaid-init.js"></script>
<link href="Winter Term Practicum Presentation - Xiao Yan_files/libs/quarto-diagram/mermaid.css" rel="stylesheet">
</head>
<body class="quarto-light">
<div class="reveal">
<div class="slides">
<section id="title-slide" class="quarto-title-block center">
<h1 class="title">Bayesian Marginal Structural Models</h1>
<p class="subtitle">An R Package Project</p>
<div class="quarto-title-authors">
<div class="quarto-title-author">
<div class="quarto-title-author-name">
Xiao Yan | Supervisor: Kuan Liu
</div>
</div>
</div>
</section>
<section id="outline" class="slide level2" data-transition="fade">
<h2>Outline</h2>
<ul>
<li>Background</li>
<li>Motivation</li>
<li>Methods</li>
<li>Results</li>
<li>Summary</li>
</ul>
</section>
<section id="background" class="slide level2" data-transition="slide">
<h2>Background</h2>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Observational studies offer a viable, efficient, and low-cost design to readily gather evidence on exposure effects.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Although more practical, exposure mechanism is nonrandomized and <mark>causal inference methods</mark> are required to draw causal conclusions.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Popular approaches used in health research are predominantly <mark>frequentist</mark> methods.</li>
</ul>
</div>
</section>
<section id="motivation" class="slide level2" data-transition="slide">
<h2>Motivation</h2>
<div class="fragment">
<ul>
<li>A stream of Bayesian causal inference methods has been developed.</li>
</ul>
<div class="fragment">
<ul>
<li>Bayesian approaches have unique estimation features that are useful in many settings, however, there is a general lack of open-access software packages to carry out these analyses.</li>
</ul>
</div>
<div class="fragment">
<div class="fragment highlight-red">
<ul>
<li>Goal: build a user-friendly R package for Bayesian Marginal Structural Models (BMSMs).</li>
</ul>
</div>
</div>
</div>
</section>
<section id="methodology" class="slide level2" data-transition="slide">
<h2>Methodology</h2>
<p>2 estimation steps:</p>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Step 1. Bayesian treatment effect weight (similar to PS)</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Step 2. Bayesian non-parametric bootstrap to maximize the utility function with respect to the causal effect</li>
</ul>
</div>
<!-- ## Methodology {transition="slide"} -->
<!-- Next, we introduce the methodology used in the `bayesmsm` package to perform step 2 of Bayesian Marginal Structural Models (BMSMs) analysis. -->
<!-- ::: {.fragment .highlight-red} -->
<!-- - Main function: 'bayesmsm' -->
<!-- ::: -->
<!-- - Used to conduct Bayesian non-parametric bootstrap to calculate causal effect. -->
</section>
<section id="notation" class="slide level2" data-transition="fade">
<h2>Notation</h2>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>A longitudinal observational study with n subjects indexed by <span class="math inline">\(i\)</span>, <span class="math inline">\(i = 1, \ldots, n\)</span> and <span class="math inline">\(J\)</span> number of visits indexed by <span class="math inline">\(j\)</span>, <span class="math inline">\(j = 1, \ldots, J\)</span>.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li><span class="math inline">\(Y_{i}\)</span>, <span class="math inline">\(X_{ij}\)</span> and <span class="math inline">\(Z_{ij}\)</span> are random variables representing an end-of-study response, covariates and the treatment for individual <span class="math inline">\(i\)</span> at visit <span class="math inline">\(j\)</span>.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>History up to visit <span class="math inline">\(j\)</span> are denoted as <span class="math inline">\(\bar{X}_{ij}\)</span> and <span class="math inline">\(\bar{Z}_{ij}\)</span>.</li>
</ul>
</div>
</section>
<section id="methodology-bmsms" class="slide level2 smaller" data-transition="fade">
<h2>Methodology: BMSMs</h2>
<p>Using Bayesian decision theory and importance sampling technique, we maximize an expected utility function (a function involving only <span class="math inline">\(\theta\)</span>), <span class="math inline">\(\textbf{u}_{\mathcal{E}}(\Theta, \bar{v}_{i}^*)\)</span>, via posterior predictive inference,</p>
<p><span class="math display">\[ \hat{\Theta}
= argmax_{\theta} \int_{\bar{v}_{i}^*} u_{\mathcal{E}}(\Theta, \bar{v}_{i}^*)P_{\mathcal{E}}(\bar{v}_{i}^* \mid \textbf{V}_n) \ d\bar{v}_{i}^* \nonumber \\ \]</span></p>
<p><span class="math display">\[ = argmax_{\theta}\int_{\bar{v}_{i}^*} u_{\mathcal{E}}(\Theta, \bar{v}_{i}^*) \frac{P_{\mathcal{E}}(\bar{v}_{i}^* \mid \textbf{V}_n) }{P_{\mathcal{O}}(\bar{v}_{i}^* \mid \textbf{V}_n)}P_{\mathcal{O}}(\bar{v}_{i}^* \mid \textbf{V}_n) \ d\bar{v}_{i}^* \]</span></p>
<ul>
<li><p><span class="math inline">\(u(\Theta, \bar{v}_{i}^*)= log P_{\mathcal{E}}( Y_{i}^* \mid \bar{z}_{iJ}^*; \Theta)\)</span>, <mark>utility function</mark></p></li>
<li><p><span class="math inline">\(w_{i}^* = \frac{P_{\mathcal{E}}(\bar{v}_{i}^* \mid \textbf{v}_n)}{P_{\mathcal{O}}(\bar{v}_{i}^* \mid \textbf{v}_n)}\)</span> expanded to <mark>treatment assignment weight</mark></p></li>
</ul>
</section>
<section id="weighted-log-likelihood" class="slide level2" data-transition="fade">
<h2>Weighted log-likelihood</h2>
<div class="panel-tabset">
<ul id="tabset-1" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-1-1">Normal Y</a></li><li><a href="#tabset-1-2">Binary Y</a></li></ul>
<div class="tab-content">
<div id="tabset-1-1">
<p><span class="math display">\[\begin{equation}
\mathcal{l}(\theta, \sigma^2 | Y, A) = \sum_{i=1}^{n} w_i \left( -\frac{1}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} (y_i - A_i \theta)^2 \right)
\end{equation}\]</span></p>
<ul>
<li><span class="math inline">\(\theta\)</span>: causal parameters on the mean</li>
<li><span class="math inline">\(\sigma\)</span>: causal parameter on the sd</li>
<li><span class="math inline">\(A\)</span>: design matrix of the causal outcome model</li>
</ul>
</div>
<div id="tabset-1-2">
<p><span class="math display">\[\begin{equation}
\mathcal{l}(\beta | Y, A) = \sum_{i=1}^{n} w_i \left( Y_i \eta_i - \log(1 + \exp(\eta_i)) \right)
\end{equation}\]</span></p>
<ul>
<li><span class="math inline">\(\beta\)</span>: causal parameters on the log-odds scale</li>
<li><span class="math inline">\(\eta\)</span>: <span class="math inline">\(A\)</span> * <span class="math inline">\(\beta\)</span>, the linear predictor</li>
</ul>
</div>
</div>
</div>
<div class="footer">
<p>Reference: <a href="https://www.stat.cmu.edu/~cshalizi/mreg/15/lectures/06/lecture-06.pdf">linearML</a> and <a href="https://www.ime.unicamp.br/~cnaber/optim_1.pdf">optim</a></p>
</div>
</section>
<section id="parallel-computing" class="slide level2">
<h2>Parallel computing</h2>
<p>Parallel computing for faster bootstrap calculation.</p>
<div class="sourceCode" id="cb1" data-code-line-numbers="|2|5-7"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href=""></a><span class="cf">if</span> (parallel <span class="sc">==</span> <span class="cn">TRUE</span>){</span>
<span id="cb1-2"><a href=""></a> numCores <span class="ot"><-</span> ncore</span>
<span id="cb1-3"><a href=""></a> <span class="fu">registerDoParallel</span>(<span class="at">cores =</span> numCores)</span>
<span id="cb1-4"><a href=""></a> </span>
<span id="cb1-5"><a href=""></a> results <span class="ot"><-</span> <span class="fu">foreach</span>(<span class="at">i=</span><span class="dv">1</span><span class="sc">:</span>nboot,</span>
<span id="cb1-6"><a href=""></a> <span class="at">.combine =</span> <span class="st">'rbind'</span>,</span>
<span id="cb1-7"><a href=""></a> <span class="at">.packages =</span> <span class="st">'MCMCpack'</span>) <span class="sc">%dopar%</span> {</span>
<span id="cb1-8"><a href=""></a> </span>
<span id="cb1-9"><a href=""></a> ... <span class="co"># Bootstrap calculation</span></span>
<span id="cb1-10"><a href=""></a> </span>
<span id="cb1-11"><a href=""></a> }</span>
<span id="cb1-12"><a href=""></a>}</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="putting-it-all-together" class="slide level2" data-transition="fade">
<h2>Putting it all together</h2>
<p>The complete function ‘bayesmsm’, at a glance:</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb2-1"><a href=""></a>bayesmsm <span class="ot"><-</span> <span class="cf">function</span>(ymodel,</span>
<span id="cb2-2"><a href=""></a> nvisit,</span>
<span id="cb2-3"><a href=""></a> <span class="at">reference =</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">0</span>,nvisit)), <span class="co"># An example of never treated</span></span>
<span id="cb2-4"><a href=""></a> <span class="at">comparator =</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span>,nvisit)),</span>
<span id="cb2-5"><a href=""></a> <span class="at">family =</span> <span class="st">"gaussian"</span>, <span class="co"># "gaussian" or "binomial"</span></span>
<span id="cb2-6"><a href=""></a> data,</span>
<span id="cb2-7"><a href=""></a> <span class="at">wmean =</span> <span class="fu">rep</span>(<span class="dv">1</span>, <span class="fu">nrow</span>(data)),</span>
<span id="cb2-8"><a href=""></a> <span class="at">nboot =</span> <span class="dv">1000</span>,</span>
<span id="cb2-9"><a href=""></a> <span class="at">optim_method =</span> <span class="st">'BFGS'</span>,</span>
<span id="cb2-10"><a href=""></a> <span class="at">estimand =</span> <span class="st">'RD'</span>,</span>
<span id="cb2-11"><a href=""></a> <span class="at">parallel =</span> <span class="cn">TRUE</span>,</span>
<span id="cb2-12"><a href=""></a> <span class="at">ncore =</span> <span class="dv">6</span>){</span>
<span id="cb2-13"><a href=""></a></span>
<span id="cb2-14"><a href=""></a> <span class="co"># load all the required R packages;</span></span>
<span id="cb2-15"><a href=""></a> <span class="cf">if</span> (<span class="sc">!</span><span class="fu">require</span>(foreach)){</span>
<span id="cb2-16"><a href=""></a> <span class="fu">install.packages</span>(<span class="st">"foreach"</span>,<span class="at">repos=</span><span class="st">"http://cran.r-project.org"</span>)</span>
<span id="cb2-17"><a href=""></a> <span class="fu">library</span>(foreach)</span>
<span id="cb2-18"><a href=""></a> }</span>
<span id="cb2-19"><a href=""></a> <span class="cf">if</span> (<span class="sc">!</span><span class="fu">require</span>(doParallel)){</span>
<span id="cb2-20"><a href=""></a> <span class="fu">install.packages</span>(<span class="st">"doParallel"</span>,<span class="at">repos=</span><span class="st">"http://cran.r-project.org"</span>)</span>
<span id="cb2-21"><a href=""></a> <span class="fu">library</span>(doParallel)</span>
<span id="cb2-22"><a href=""></a> }</span>
<span id="cb2-23"><a href=""></a> <span class="cf">if</span> (<span class="sc">!</span><span class="fu">require</span>(MCMCpack)){</span>
<span id="cb2-24"><a href=""></a> <span class="fu">install.packages</span>(<span class="st">"MCMCpack"</span>,<span class="at">repos=</span><span class="st">"http://cran.r-project.org"</span>)</span>
<span id="cb2-25"><a href=""></a> <span class="fu">library</span>(MCMCpack)</span>
<span id="cb2-26"><a href=""></a> }</span>
<span id="cb2-27"><a href=""></a></span>
<span id="cb2-28"><a href=""></a> <span class="co"># return error message if the input weight vector has different length comparing to the outcome Y;</span></span>
<span id="cb2-29"><a href=""></a> <span class="cf">if</span> (<span class="fu">length</span>(wmean) <span class="sc">!=</span> <span class="fu">nrow</span>(data)) {</span>
<span id="cb2-30"><a href=""></a> <span class="fu">stop</span>(<span class="st">"The length of the weight vector does not match the length of Y."</span>)</span>
<span id="cb2-31"><a href=""></a> }</span>
<span id="cb2-32"><a href=""></a></span>
<span id="cb2-33"><a href=""></a> <span class="co"># load utility functions</span></span>
<span id="cb2-34"><a href=""></a> extract_variables <span class="ot"><-</span> <span class="cf">function</span>(formula) {</span>
<span id="cb2-35"><a href=""></a> <span class="co"># Get the terms of the formula</span></span>
<span id="cb2-36"><a href=""></a> formula_terms <span class="ot"><-</span> <span class="fu">terms</span>(formula)</span>
<span id="cb2-37"><a href=""></a></span>
<span id="cb2-38"><a href=""></a> <span class="co"># Extract the response variable name (if there is one)</span></span>
<span id="cb2-39"><a href=""></a> response_variable <span class="ot"><-</span> <span class="fu">attr</span>(formula_terms, <span class="st">"response"</span>)</span>
<span id="cb2-40"><a href=""></a> response_name <span class="ot"><-</span> <span class="cf">if</span> (response_variable <span class="sc">></span> <span class="dv">0</span>) {</span>
<span id="cb2-41"><a href=""></a> all_vars <span class="ot"><-</span> <span class="fu">all.vars</span>(formula)</span>
<span id="cb2-42"><a href=""></a> all_vars[response_variable]</span>
<span id="cb2-43"><a href=""></a> } <span class="cf">else</span> {<span class="cn">NA</span>}</span>
<span id="cb2-44"><a href=""></a></span>
<span id="cb2-45"><a href=""></a> <span class="co"># Extract predictor variable names</span></span>
<span id="cb2-46"><a href=""></a> predictor_names <span class="ot"><-</span> <span class="fu">attr</span>(formula_terms, <span class="st">"term.labels"</span>)</span>
<span id="cb2-47"><a href=""></a></span>
<span id="cb2-48"><a href=""></a> <span class="co"># Return a list of response and predictor variables</span></span>
<span id="cb2-49"><a href=""></a> <span class="fu">list</span>(<span class="at">response =</span> response_name, <span class="at">predictors =</span> predictor_names)</span>
<span id="cb2-50"><a href=""></a> }</span>
<span id="cb2-51"><a href=""></a></span>
<span id="cb2-52"><a href=""></a> variables <span class="ot"><-</span> <span class="fu">extract_variables</span>(ymodel) <span class="co"># Extract variable names from the formula</span></span>
<span id="cb2-53"><a href=""></a> Y_name <span class="ot"><-</span> variables<span class="sc">$</span>response</span>
<span id="cb2-54"><a href=""></a></span>
<span id="cb2-55"><a href=""></a> Y <span class="ot"><-</span> data[[Y_name]]</span>
<span id="cb2-56"><a href=""></a> A_base <span class="ot"><-</span> <span class="fu">data.frame</span>(<span class="fu">matrix</span>(<span class="at">data =</span> <span class="cn">NA</span>,</span>
<span id="cb2-57"><a href=""></a> <span class="at">nrow =</span> <span class="fu">nrow</span>(data),</span>
<span id="cb2-58"><a href=""></a> <span class="at">ncol =</span> <span class="fu">length</span>(variables<span class="sc">$</span>predictors)))</span>
<span id="cb2-59"><a href=""></a> <span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">length</span>(variables<span class="sc">$</span>predictors)){</span>
<span id="cb2-60"><a href=""></a> initial_vector <span class="ot"><-</span> variables<span class="sc">$</span>predictors[i]</span>
<span id="cb2-61"><a href=""></a> split_vector <span class="ot"><-</span> <span class="fu">strsplit</span>(initial_vector, <span class="st">":"</span>)</span>
<span id="cb2-62"><a href=""></a> new_vector <span class="ot"><-</span> <span class="fu">unlist</span>(split_vector)</span>
<span id="cb2-63"><a href=""></a> <span class="cf">if</span> (<span class="fu">length</span>(new_vector)<span class="sc">==</span><span class="dv">1</span>){</span>
<span id="cb2-64"><a href=""></a> A_base[,i] <span class="ot"><-</span> data[, new_vector]</span>
<span id="cb2-65"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (<span class="fu">length</span>(new_vector)<span class="sc">></span><span class="dv">1</span>){</span>
<span id="cb2-66"><a href=""></a> A_base[,i] <span class="ot"><-</span> <span class="fu">apply</span>(data[, new_vector],<span class="dv">1</span>,prod)</span>
<span id="cb2-67"><a href=""></a> }</span>
<span id="cb2-68"><a href=""></a> }</span>
<span id="cb2-69"><a href=""></a></span>
<span id="cb2-70"><a href=""></a> A <span class="ot"><-</span> <span class="fu">cbind</span>(<span class="dv">1</span>, A_base)</span>
<span id="cb2-71"><a href=""></a> <span class="fu">colnames</span>(A)[<span class="dv">2</span><span class="sc">:</span><span class="fu">ncol</span>(A)]<span class="ot"><-</span> variables<span class="sc">$</span>predictors</span>
<span id="cb2-72"><a href=""></a></span>
<span id="cb2-73"><a href=""></a> wloglik_normal<span class="ot"><-</span><span class="cf">function</span>(param,</span>
<span id="cb2-74"><a href=""></a> Y,</span>
<span id="cb2-75"><a href=""></a> A,</span>
<span id="cb2-76"><a href=""></a> weight){</span>
<span id="cb2-77"><a href=""></a> <span class="co">#number of observations;</span></span>
<span id="cb2-78"><a href=""></a> n <span class="ot"><-</span> <span class="fu">length</span>(Y)</span>
<span id="cb2-79"><a href=""></a> theta <span class="ot"><-</span> param[<span class="dv">1</span><span class="sc">:</span><span class="fu">dim</span>(A)[<span class="dv">2</span>]] <span class="co">#causal parameters on the mean</span></span>
<span id="cb2-80"><a href=""></a> <span class="co">#number of parameter is determined by number of treatment variables, plus intercept;</span></span>
<span id="cb2-81"><a href=""></a> sigma <span class="ot"><-</span> param[(<span class="fu">dim</span>(A)[<span class="dv">2</span>]<span class="sc">+</span><span class="dv">1</span>)] <span class="co"># the remaining the parameter represent the standard deviation;</span></span>
<span id="cb2-82"><a href=""></a> mmat <span class="ot"><-</span> <span class="fu">as.matrix</span>(A) <span class="co">#design matrix of the causal outcome model, e.g., A = cbind(1, a_1, a_2);</span></span>
<span id="cb2-83"><a href=""></a> logl<span class="ot"><-</span> <span class="sc">-</span><span class="fl">0.5</span><span class="sc">*</span><span class="fu">log</span>(sigma<span class="sc">**</span><span class="dv">2</span>) <span class="sc">-</span> <span class="fl">0.5</span><span class="sc">*</span>((Y <span class="sc">-</span> mmat<span class="sc">%*%</span>theta)<span class="sc">**</span><span class="dv">2</span>)<span class="sc">/</span>(sigma<span class="sc">**</span><span class="dv">2</span>)</span>
<span id="cb2-84"><a href=""></a> wlogl<span class="ot"><-</span><span class="fu">sum</span>(weight<span class="sc">*</span>logl)</span>
<span id="cb2-85"><a href=""></a> <span class="fu">return</span>(wlogl)</span>
<span id="cb2-86"><a href=""></a> }</span>
<span id="cb2-87"><a href=""></a></span>
<span id="cb2-88"><a href=""></a> wloglik_binomial <span class="ot"><-</span> <span class="cf">function</span>(param,</span>
<span id="cb2-89"><a href=""></a> Y,</span>
<span id="cb2-90"><a href=""></a> A,</span>
<span id="cb2-91"><a href=""></a> weight){</span>
<span id="cb2-92"><a href=""></a> <span class="co"># number of observations;</span></span>
<span id="cb2-93"><a href=""></a> n <span class="ot"><-</span> <span class="fu">length</span>(Y)</span>
<span id="cb2-94"><a href=""></a> beta <span class="ot"><-</span> param[<span class="dv">1</span><span class="sc">:</span><span class="fu">dim</span>(A)[<span class="dv">2</span>]] <span class="co"># causal parameters on the log-odds scale (no sigma for binomial?)</span></span>
<span id="cb2-95"><a href=""></a> mmat <span class="ot"><-</span> <span class="fu">as.matrix</span>(A)</span>
<span id="cb2-96"><a href=""></a> eta<span class="ot"><-</span>mmat <span class="sc">%*%</span> beta <span class="co"># linear predictor</span></span>
<span id="cb2-97"><a href=""></a> logl <span class="ot"><-</span> Y<span class="sc">*</span>eta <span class="sc">-</span> <span class="fu">log</span>(<span class="dv">1</span><span class="sc">+</span><span class="fu">exp</span>(eta))</span>
<span id="cb2-98"><a href=""></a> wlogl<span class="ot"><-</span><span class="fu">sum</span>(weight<span class="sc">*</span>logl)</span>
<span id="cb2-99"><a href=""></a> <span class="fu">return</span>(wlogl)</span>
<span id="cb2-100"><a href=""></a> }</span>
<span id="cb2-101"><a href=""></a></span>
<span id="cb2-102"><a href=""></a> expit <span class="ot"><-</span> <span class="cf">function</span>(x){<span class="fu">exp</span>(x) <span class="sc">/</span> (<span class="dv">1</span><span class="sc">+</span><span class="fu">exp</span>(x))}</span>
<span id="cb2-103"><a href=""></a></span>
<span id="cb2-104"><a href=""></a> <span class="cf">if</span> (family <span class="sc">==</span> <span class="st">"gaussian"</span>){</span>
<span id="cb2-105"><a href=""></a> wfn <span class="ot">=</span> wloglik_normal</span>
<span id="cb2-106"><a href=""></a> inits1 <span class="ot"><-</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="fl">0.1</span>, <span class="fu">length</span>(A)), <span class="dv">4</span>) <span class="co"># Default initial values, 4 is for the SD;</span></span>
<span id="cb2-107"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (family <span class="sc">==</span> <span class="st">"binomial"</span>){</span>
<span id="cb2-108"><a href=""></a> wfn <span class="ot">=</span> wloglik_binomial</span>
<span id="cb2-109"><a href=""></a> inits1 <span class="ot"><-</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="fl">0.1</span>, <span class="fu">length</span>(A)))</span>
<span id="cb2-110"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (<span class="sc">!</span>family <span class="sc">%in%</span> <span class="fu">c</span>(<span class="st">"gaussian"</span>,<span class="st">"binomial"</span>)){</span>
<span id="cb2-111"><a href=""></a> <span class="fu">stop</span>(<span class="st">"Current version only handles continuous (gaussian) and binary (binomial) outcomes."</span>)</span>
<span id="cb2-112"><a href=""></a> }</span>
<span id="cb2-113"><a href=""></a></span>
<span id="cb2-114"><a href=""></a></span>
<span id="cb2-115"><a href=""></a> <span class="co"># Parallel computing for bootstrapping</span></span>
<span id="cb2-116"><a href=""></a> <span class="cf">if</span> (parallel <span class="sc">==</span> <span class="cn">TRUE</span>){</span>
<span id="cb2-117"><a href=""></a> numCores <span class="ot"><-</span> ncore</span>
<span id="cb2-118"><a href=""></a> <span class="fu">registerDoParallel</span>(<span class="at">cores =</span> numCores)</span>
<span id="cb2-119"><a href=""></a></span>
<span id="cb2-120"><a href=""></a> results <span class="ot"><-</span> <span class="fu">foreach</span>(<span class="at">i=</span><span class="dv">1</span><span class="sc">:</span>nboot,</span>
<span id="cb2-121"><a href=""></a> <span class="at">.combine =</span> <span class="st">'rbind'</span>,</span>
<span id="cb2-122"><a href=""></a> <span class="at">.packages =</span> <span class="st">'MCMCpack'</span>) <span class="sc">%dopar%</span> {</span>
<span id="cb2-123"><a href=""></a></span>
<span id="cb2-124"><a href=""></a> calculate_effect <span class="ot"><-</span> <span class="cf">function</span>(intervention_levels, variables, param_estimates) {</span>
<span id="cb2-125"><a href=""></a> <span class="co"># Start with the intercept term</span></span>
<span id="cb2-126"><a href=""></a> effect<span class="ot"><-</span>effect_intercept<span class="ot"><-</span>param_estimates[<span class="dv">1</span>]</span>
<span id="cb2-127"><a href=""></a></span>
<span id="cb2-128"><a href=""></a> <span class="co"># Go through each predictor and add its contribution</span></span>
<span id="cb2-129"><a href=""></a> <span class="cf">for</span> (i <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span><span class="fu">length</span>(variables<span class="sc">$</span>predictors)) {</span>
<span id="cb2-130"><a href=""></a> term <span class="ot"><-</span> variables<span class="sc">$</span>predictors[i]</span>
<span id="cb2-131"><a href=""></a> term_variables <span class="ot"><-</span> <span class="fu">unlist</span>(<span class="fu">strsplit</span>(term, <span class="st">":"</span>))</span>
<span id="cb2-132"><a href=""></a> term_index <span class="ot"><-</span> <span class="fu">which</span>(<span class="fu">names</span>(param_estimates) <span class="sc">==</span> term)</span>
<span id="cb2-133"><a href=""></a></span>
<span id="cb2-134"><a href=""></a> <span class="co"># Calculate the product of intervention levels for the interaction term</span></span>
<span id="cb2-135"><a href=""></a> term_contribution <span class="ot"><-</span> param_estimates[term_index]</span>
<span id="cb2-136"><a href=""></a> <span class="cf">for</span> (term_variable <span class="cf">in</span> term_variables) {</span>
<span id="cb2-137"><a href=""></a> var_index <span class="ot"><-</span> <span class="fu">which</span>(variables<span class="sc">$</span>predictors <span class="sc">==</span> term_variable)</span>
<span id="cb2-138"><a href=""></a> term_contribution <span class="ot"><-</span> term_contribution <span class="sc">*</span> intervention_levels[var_index]</span>
<span id="cb2-139"><a href=""></a> }</span>
<span id="cb2-140"><a href=""></a></span>
<span id="cb2-141"><a href=""></a> <span class="co"># Add the term contribution to the effect</span></span>
<span id="cb2-142"><a href=""></a> effect <span class="ot"><-</span> effect <span class="sc">+</span> term_contribution</span>
<span id="cb2-143"><a href=""></a> }</span>
<span id="cb2-144"><a href=""></a></span>
<span id="cb2-145"><a href=""></a> <span class="fu">return</span>(effect)</span>
<span id="cb2-146"><a href=""></a> }</span>
<span id="cb2-147"><a href=""></a></span>
<span id="cb2-148"><a href=""></a> results.it <span class="ot"><-</span> <span class="fu">matrix</span>(<span class="cn">NA</span>, <span class="dv">1</span>, <span class="dv">3</span>) <span class="co">#result matrix, three columns for bootest, effect_ref, and effect_comp;</span></span>
<span id="cb2-149"><a href=""></a></span>
<span id="cb2-150"><a href=""></a> alpha <span class="ot"><-</span> <span class="fu">as.numeric</span>(<span class="fu">rdirichlet</span>(<span class="dv">1</span>, <span class="fu">rep</span>(<span class="fl">1.0</span>, <span class="fu">length</span>(Y))))</span>
<span id="cb2-151"><a href=""></a></span>
<span id="cb2-152"><a href=""></a> maxim <span class="ot"><-</span> <span class="fu">optim</span>(inits1,</span>
<span id="cb2-153"><a href=""></a> <span class="at">fn =</span> wfn,</span>
<span id="cb2-154"><a href=""></a> <span class="at">Y =</span> Y,</span>
<span id="cb2-155"><a href=""></a> <span class="at">A =</span> A,</span>
<span id="cb2-156"><a href=""></a> <span class="at">weight =</span> alpha <span class="sc">*</span> wmean,</span>
<span id="cb2-157"><a href=""></a> <span class="at">control =</span> <span class="fu">list</span>(<span class="at">fnscale =</span> <span class="sc">-</span><span class="dv">1</span>),</span>
<span id="cb2-158"><a href=""></a> <span class="at">method =</span> optim_method,</span>
<span id="cb2-159"><a href=""></a> <span class="at">hessian =</span> <span class="cn">FALSE</span>)</span>
<span id="cb2-160"><a href=""></a></span>
<span id="cb2-161"><a href=""></a> <span class="fu">names</span>(maxim<span class="sc">$</span>par) <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"(Intercept)"</span>, variables<span class="sc">$</span>predictors)</span>
<span id="cb2-162"><a href=""></a></span>
<span id="cb2-163"><a href=""></a> <span class="co"># Calculate the effects</span></span>
<span id="cb2-164"><a href=""></a> results.it[<span class="dv">1</span>,<span class="dv">1</span>] <span class="ot"><-</span> <span class="fu">calculate_effect</span>(reference, variables, <span class="at">param_estimates=</span>maxim<span class="sc">$</span>par)</span>
<span id="cb2-165"><a href=""></a> results.it[<span class="dv">1</span>,<span class="dv">2</span>] <span class="ot"><-</span> <span class="fu">calculate_effect</span>(comparator, variables, <span class="at">param_estimates=</span>maxim<span class="sc">$</span>par)</span>
<span id="cb2-166"><a href=""></a></span>
<span id="cb2-167"><a href=""></a> <span class="co"># Calculate the ATE</span></span>
<span id="cb2-168"><a href=""></a> <span class="cf">if</span> (family <span class="sc">==</span> <span class="st">"binomial"</span>) { <span class="co"># binary outcomes</span></span>
<span id="cb2-169"><a href=""></a> <span class="cf">if</span> (estimand <span class="sc">==</span> <span class="st">"RD"</span>) { <span class="co"># Risk Difference</span></span>
<span id="cb2-170"><a href=""></a> results.it[<span class="dv">1</span>,<span class="dv">3</span>] <span class="ot"><-</span> <span class="fu">expit</span>(results.it[<span class="dv">1</span>,<span class="dv">2</span>]) <span class="sc">-</span> <span class="fu">expit</span>(results.it[<span class="dv">1</span>,<span class="dv">1</span>])</span>
<span id="cb2-171"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (estimand <span class="sc">==</span> <span class="st">"RR"</span>) { <span class="co"># Relative Risk</span></span>
<span id="cb2-172"><a href=""></a> results.it[<span class="dv">1</span>,<span class="dv">3</span>] <span class="ot"><-</span> <span class="fu">expit</span>(results.it[<span class="dv">1</span>,<span class="dv">2</span>]) <span class="sc">/</span> <span class="fu">expit</span>(results.it[<span class="dv">1</span>,<span class="dv">1</span>])</span>
<span id="cb2-173"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (estimand <span class="sc">==</span> <span class="st">"OR"</span>) { <span class="co"># Odds Ratio</span></span>
<span id="cb2-174"><a href=""></a> results.it[<span class="dv">1</span>,<span class="dv">3</span>] <span class="ot"><-</span> (<span class="fu">expit</span>(results.it[<span class="dv">1</span>,<span class="dv">2</span>]) <span class="sc">/</span> (<span class="dv">1</span> <span class="sc">-</span> <span class="fu">expit</span>(results.it[<span class="dv">1</span>,<span class="dv">2</span>]))) <span class="sc">/</span></span>
<span id="cb2-175"><a href=""></a> (<span class="fu">expit</span>(results.it[<span class="dv">1</span>,<span class="dv">1</span>]) <span class="sc">/</span> (<span class="dv">1</span> <span class="sc">-</span> <span class="fu">expit</span>(results.it[<span class="dv">1</span>,<span class="dv">1</span>])))</span>
<span id="cb2-176"><a href=""></a> }</span>
<span id="cb2-177"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (family <span class="sc">==</span> <span class="st">"gaussian"</span>){ <span class="co"># continuous outcomes</span></span>
<span id="cb2-178"><a href=""></a> <span class="cf">if</span> (estimand <span class="sc">==</span> <span class="st">"RD"</span>) { <span class="co"># Risk Difference</span></span>
<span id="cb2-179"><a href=""></a> results.it[<span class="dv">1</span>,<span class="dv">3</span>] <span class="ot"><-</span> results.it[<span class="dv">1</span>,<span class="dv">2</span>] <span class="sc">-</span> results.it[<span class="dv">1</span>,<span class="dv">1</span>]</span>
<span id="cb2-180"><a href=""></a> }</span>
<span id="cb2-181"><a href=""></a> }</span>
<span id="cb2-182"><a href=""></a></span>
<span id="cb2-183"><a href=""></a> <span class="co"># combining parallel results;</span></span>
<span id="cb2-184"><a href=""></a> <span class="fu">cbind</span>(i,results.it) <span class="co">#end of parallel;</span></span>
<span id="cb2-185"><a href=""></a> }</span>
<span id="cb2-186"><a href=""></a></span>
<span id="cb2-187"><a href=""></a> <span class="co">#saving output for the parallel setting;</span></span>
<span id="cb2-188"><a href=""></a> <span class="fu">return</span>(<span class="fu">list</span>(</span>
<span id="cb2-189"><a href=""></a> <span class="at">mean =</span> <span class="fu">mean</span>(results[,<span class="dv">4</span>]),</span>
<span id="cb2-190"><a href=""></a> <span class="at">sd =</span> <span class="fu">sqrt</span>(<span class="fu">var</span>(results[,<span class="dv">4</span>])),</span>
<span id="cb2-191"><a href=""></a> <span class="at">quantile =</span> <span class="fu">quantile</span>(results[,<span class="dv">4</span>], <span class="at">probs =</span> <span class="fu">c</span>(<span class="fl">0.025</span>, <span class="fl">0.975</span>)),</span>
<span id="cb2-192"><a href=""></a> <span class="at">bootdata =</span> <span class="fu">data.frame</span>(<span class="at">effect_reference =</span> results[,<span class="dv">2</span>],</span>
<span id="cb2-193"><a href=""></a> <span class="at">effect_comparator =</span> results[,<span class="dv">3</span>],</span>
<span id="cb2-194"><a href=""></a> <span class="at">ATE =</span> results[,<span class="dv">4</span>]),</span>
<span id="cb2-195"><a href=""></a> <span class="at">reference =</span> reference,</span>
<span id="cb2-196"><a href=""></a> <span class="at">comparator =</span> comparator</span>
<span id="cb2-197"><a href=""></a> ))</span>
<span id="cb2-198"><a href=""></a></span>
<span id="cb2-199"><a href=""></a> }</span>
<span id="cb2-200"><a href=""></a></span>
<span id="cb2-201"><a href=""></a> <span class="cf">else</span> <span class="cf">if</span> (parallel <span class="sc">==</span> <span class="cn">FALSE</span>) {</span>
<span id="cb2-202"><a href=""></a></span>
<span id="cb2-203"><a href=""></a> bootest <span class="ot"><-</span> <span class="fu">numeric</span>(nboot)</span>
<span id="cb2-204"><a href=""></a> effect_reference <span class="ot"><-</span> <span class="fu">numeric</span>(nboot)</span>
<span id="cb2-205"><a href=""></a> effect_comparator <span class="ot"><-</span> <span class="fu">numeric</span>(nboot)</span>
<span id="cb2-206"><a href=""></a></span>
<span id="cb2-207"><a href=""></a> <span class="cf">for</span> (j <span class="cf">in</span> <span class="dv">1</span><span class="sc">:</span>nboot) {</span>
<span id="cb2-208"><a href=""></a> alpha <span class="ot"><-</span> <span class="fu">as.numeric</span>(<span class="fu">rdirichlet</span>(<span class="dv">1</span>, <span class="fu">rep</span>(<span class="fl">1.0</span>, <span class="fu">length</span>(Y))))</span>
<span id="cb2-209"><a href=""></a></span>
<span id="cb2-210"><a href=""></a> maxim <span class="ot"><-</span> <span class="fu">optim</span>(inits1,</span>
<span id="cb2-211"><a href=""></a> <span class="at">fn =</span> wfn,</span>
<span id="cb2-212"><a href=""></a> <span class="at">Y =</span> Y,</span>
<span id="cb2-213"><a href=""></a> <span class="at">A =</span> A,</span>
<span id="cb2-214"><a href=""></a> <span class="at">weight =</span> alpha <span class="sc">*</span> wmean,</span>
<span id="cb2-215"><a href=""></a> <span class="at">control =</span> <span class="fu">list</span>(<span class="at">fnscale =</span> <span class="sc">-</span><span class="dv">1</span>),</span>
<span id="cb2-216"><a href=""></a> <span class="at">method =</span> optim_method,</span>
<span id="cb2-217"><a href=""></a> <span class="at">hessian =</span> <span class="cn">FALSE</span>)</span>
<span id="cb2-218"><a href=""></a></span>
<span id="cb2-219"><a href=""></a> <span class="fu">names</span>(maxim<span class="sc">$</span>par) <span class="ot"><-</span> <span class="fu">c</span>(<span class="st">"(Intercept)"</span>, variables<span class="sc">$</span>predictors)</span>
<span id="cb2-220"><a href=""></a></span>
<span id="cb2-221"><a href=""></a> <span class="co"># Calculate the effects</span></span>
<span id="cb2-222"><a href=""></a> effect_reference[j] <span class="ot"><-</span> <span class="fu">calculate_effect</span>(reference, variables, <span class="at">param_estimates=</span>maxim<span class="sc">$</span>par)</span>
<span id="cb2-223"><a href=""></a> effect_comparator[j] <span class="ot"><-</span> <span class="fu">calculate_effect</span>(comparator, variables, <span class="at">param_estimates=</span>maxim<span class="sc">$</span>par)</span>
<span id="cb2-224"><a href=""></a></span>
<span id="cb2-225"><a href=""></a> <span class="co"># Calculate the ATE</span></span>
<span id="cb2-226"><a href=""></a> <span class="cf">if</span> (family <span class="sc">==</span> <span class="st">"binomial"</span>) { <span class="co"># binary outcomes</span></span>
<span id="cb2-227"><a href=""></a> <span class="cf">if</span> (estimand <span class="sc">==</span> <span class="st">"RD"</span>) { <span class="co"># Risk Difference</span></span>
<span id="cb2-228"><a href=""></a> bootest[j] <span class="ot"><-</span> <span class="fu">expit</span>(effect_comparator[j]) <span class="sc">-</span> <span class="fu">expit</span>(effect_reference[j])</span>
<span id="cb2-229"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (estimand <span class="sc">==</span> <span class="st">"RR"</span>) { <span class="co"># Relative Risk</span></span>
<span id="cb2-230"><a href=""></a> bootest[j] <span class="ot"><-</span> <span class="fu">expit</span>(effect_comparator[j]) <span class="sc">/</span> <span class="fu">expit</span>(effect_reference[j])</span>
<span id="cb2-231"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (estimand <span class="sc">==</span> <span class="st">"OR"</span>) { <span class="co"># Odds Ratio</span></span>
<span id="cb2-232"><a href=""></a> bootest[j] <span class="ot"><-</span> (<span class="fu">expit</span>(effect_comparator[j]) <span class="sc">/</span> (<span class="dv">1</span> <span class="sc">-</span> <span class="fu">expit</span>(effect_comparator[j]))) <span class="sc">/</span></span>
<span id="cb2-233"><a href=""></a> (<span class="fu">expit</span>(effect_reference[j]) <span class="sc">/</span> (<span class="dv">1</span> <span class="sc">-</span> <span class="fu">expit</span>(effect_reference[j])))</span>
<span id="cb2-234"><a href=""></a> }</span>
<span id="cb2-235"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (family <span class="sc">==</span> <span class="st">"gaussian"</span>){ <span class="co"># continuous outcomes</span></span>
<span id="cb2-236"><a href=""></a> <span class="cf">if</span> (estimand <span class="sc">==</span> <span class="st">"RD"</span>) { <span class="co"># Risk Difference</span></span>
<span id="cb2-237"><a href=""></a> bootest[j] <span class="ot"><-</span> effect_comparator[j] <span class="sc">-</span> effect_reference[j]</span>
<span id="cb2-238"><a href=""></a> } <span class="cf">else</span> <span class="cf">if</span> (estimand <span class="sc">%in%</span> <span class="fu">c</span>(<span class="st">"RR"</span>,<span class="st">"OR"</span>)) {</span>
<span id="cb2-239"><a href=""></a> <span class="co"># print a warning message that say for continuous outcome, RR and OR specification are ignored. RD is the causal estimate;</span></span>
<span id="cb2-240"><a href=""></a> <span class="fu">warning</span>(<span class="st">"For continuous outcomes, RR and OR specifications are ignored. RD is the only applicable causal estimate."</span>)</span>
<span id="cb2-241"><a href=""></a> }</span>
<span id="cb2-242"><a href=""></a> }</span>
<span id="cb2-243"><a href=""></a></span>
<span id="cb2-244"><a href=""></a> }</span>
<span id="cb2-245"><a href=""></a></span>
<span id="cb2-246"><a href=""></a> <span class="co">#saving output for the non-parallel setting;</span></span>
<span id="cb2-247"><a href=""></a> <span class="fu">return</span>(<span class="fu">list</span>(</span>
<span id="cb2-248"><a href=""></a> <span class="at">mean =</span> <span class="fu">mean</span>(bootest),</span>
<span id="cb2-249"><a href=""></a> <span class="at">sd =</span> <span class="fu">sqrt</span>(<span class="fu">var</span>(bootest)),</span>
<span id="cb2-250"><a href=""></a> <span class="at">quantile =</span> <span class="fu">quantile</span>(bootest, <span class="at">probs =</span> <span class="fu">c</span>(<span class="fl">0.025</span>, <span class="fl">0.975</span>)),</span>
<span id="cb2-251"><a href=""></a> <span class="at">bootdata =</span> <span class="fu">data.frame</span>(effect_reference, effect_comparator, <span class="at">ATE=</span>bootest),</span>
<span id="cb2-252"><a href=""></a> <span class="at">reference =</span> reference,</span>
<span id="cb2-253"><a href=""></a> <span class="at">comparator =</span> comparator</span>
<span id="cb2-254"><a href=""></a> ))</span>
<span id="cb2-255"><a href=""></a></span>
<span id="cb2-256"><a href=""></a> }</span>
<span id="cb2-257"><a href=""></a>}</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</section>
<section id="results-dag" class="slide level2" data-transition="slide">
<h2>Results (DAG)</h2>
<p>Figure: Longitudinal Directed Acyclic Graph (DAG) for 2 visits</p>
<div class="cell" data-reveal="true" data-layout-align="default">
<div class="cell-output-display">
<div>
<p></p><figure class=""><p></p>
<div>
<pre class="mermaid mermaid-js">flowchart TD
Cov1[Covariates 1] --> Cov2[Covariates 2]
Cov1 --> Treat1[Treatment 1]
Cov1 --> Treat2
Cov1 --> Outcome[Outcome]
Cov2 --> Treat2
Cov2 --> Outcome
Treat1 --> Treat2[Treatment 2]
Treat1 --> Cov2
Treat1 --> Outcome
Treat2 --> Outcome
</pre>
</div>
<p></p></figure><p></p>
</div>
</div>
</div>
</section>
<section id="results" class="slide level2" data-transition="fade">
<h2>Results</h2>
<p>Example usage of function <code>bayesmsm</code>:</p>
<div class="sourceCode" id="cb3" data-code-line-numbers="|1-2|3-4|5|7|10"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href=""></a>model <span class="ot"><-</span> <span class="fu">bayesmsm</span>(<span class="at">ymodel =</span> y <span class="sc">~</span> a_1<span class="sc">+</span>a_2,</span>
<span id="cb3-2"><a href=""></a> <span class="at">nvisit =</span> <span class="dv">2</span>,</span>
<span id="cb3-3"><a href=""></a> <span class="at">reference =</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">0</span>,<span class="dv">2</span>)),</span>
<span id="cb3-4"><a href=""></a> <span class="at">comparator =</span> <span class="fu">c</span>(<span class="fu">rep</span>(<span class="dv">1</span>,<span class="dv">2</span>)),</span>
<span id="cb3-5"><a href=""></a> <span class="at">family =</span> <span class="st">"gaussian"</span>,</span>
<span id="cb3-6"><a href=""></a> <span class="at">data =</span> testdata,</span>
<span id="cb3-7"><a href=""></a> <span class="at">wmean =</span> Wmsm<span class="sc">$</span>weights,</span>
<span id="cb3-8"><a href=""></a> <span class="at">nboot =</span> <span class="dv">1000</span>,</span>
<span id="cb3-9"><a href=""></a> <span class="at">optim_method =</span> <span class="st">"BFGS"</span>,</span>
<span id="cb3-10"><a href=""></a> <span class="at">estimand =</span> <span class="st">"RD"</span>,</span>
<span id="cb3-11"><a href=""></a> <span class="at">parallel =</span> <span class="cn">TRUE</span>,</span>
<span id="cb3-12"><a href=""></a> <span class="at">ncore =</span> <span class="dv">6</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="footer">
<p>Inspired by <code>gfoRmula</code> and <code>ltmle</code>, see: <a href="https://kuan-liu.github.io/causal_Quarto/section3.html#implementing-targeted-maximum-likelihood-estimation">Causal analysis with time-varying treatment</a></p>
</div>
</section>
<section id="bootstrap-results" class="slide level2" data-transition="fade">
<h2>Bootstrap Results</h2>
<div class="sourceCode" id="cb4"><pre class="sourceCode numberSource r number-lines code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href=""></a>model<span class="sc">$</span>bootdata</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="columns">
<div class="column" style="width:100%;">
<div class="cell">
<div class="cell-output cell-output-stdout">
<pre><code> effect_reference effect_comparator ATE
1 2.342642 -0.7230695 -3.065711
2 2.279753 -0.8778490 -3.157602
3 2.243634 -0.8274983 -3.071133
4 2.320007 -0.8651029 -3.185109
5 2.273139 -0.8059713 -3.079110
6 2.342425 -0.8598928 -3.202318</code></pre>
</div>
</div>
</div>
</div>
<div class="fragment">
<p>This model output allows users to plot and summarize the bootstrap results.</p>
</div>
</section>
<section id="results-1" class="slide level2" data-transition="fade">
<h2>Results</h2>
<p>There are also other functions in this package available to visualize and interpret the results:</p>
<ul>
<li>‘plot_ATE’</li>
<li>‘plot_APO’</li>
<li>‘plot_est_box’</li>
</ul>
</section>
<section id="other-functions-in-the-package" class="slide level2 smaller scrollable" data-transition="fade">
<h2>Other functions in the package</h2>
<div class="panel-tabset">
<ul id="tabset-2" class="panel-tabset-tabby"><li><a data-tabby-default="" href="#tabset-2-1">plot_ATE</a></li><li><a href="#tabset-2-2">plot_est_box</a></li></ul>
<div class="tab-content">
<div id="tabset-2-1">
<div class="cell">
<div class="cell-output-display">
<div>
<figure>
<p><img data-src="Winter-Term-Practicum-Presentation---Xiao-Yan_files/figure-revealjs/unnamed-chunk-6-1.png" width="960"></p>
</figure>
</div>
</div>
</div>
</div>
<div id="tabset-2-2">
<div class="cell">
<div class="cell-output-display">
<div>
<figure>
<p><img data-src="Winter-Term-Practicum-Presentation---Xiao-Yan_files/figure-revealjs/unnamed-chunk-7-1.png" width="960"></p>
</figure>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="summary" class="slide level2" data-transition="slide">
<h2>Summary</h2>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Suitable for both continuous and binary Y.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Parallel computing option is provided in <code>bayesmsm</code> for faster calculation.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Simplifies complex BMSM analysis for users.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Our package can be downloaded on GitHub: <a href="https://kuan-liu-lab.github.io/bayesmsm/">Kuan-Liu-Lab/bayesmsm</a></li>
</ul>
</div>
</section>
<section id="future-work" class="slide level2" data-transition="slide">
<h2>Future work</h2>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Bayesian parametric estimation of treatment assignment weights (step 1 of BMSM).</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Improve computational efficiency for larger datasets.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Write documentation (vignette) for this package.</li>
</ul>
</div>
<div class="fragment fade-in-then-semi-out">
<ul>
<li>Possibly extend this package for survival outcomes.</li>
</ul>
</div>
</section>
<section id="references" class="slide level2" data-transition="fade">
<h2>References</h2>
<ul>
<li>Liu, K. (2021). Bayesian causal inference with longitudinal data. Tspace.library.utoronto.ca. https://tspace.library.utoronto.ca/handle/1807/109330</li>
<li>Saarela, O., Stephens, D. A., Moodie, E. E. M., & Klein, M. B. (2015). On Bayesian estimation of marginal structural models. Biometrics, 71(2), 279–288. https://doi.org/10.1111/biom.12269</li>
<li>Robins, J. M., Hernán, M. A., & Brumback, B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology, 11(5), 550–560. https://doi.org/10.1097/00001648-200009000-00011</li>
</ul>
</section>
<section id="references-1" class="slide level2">
<h2>References</h2>
<ul>
<li>Liu, K., Saarela, O., Feldman, B. M., & Pullenayegum, E. (2020). Estimation of causal effects with repeatedly measured outcomes in a Bayesian framework. Statistical Methods in Medical Research, 29(9), 2507–2519. https://doi.org/10.1177/0962280219900362</li>
</ul>
</section>
<section id="questions" class="slide level2" data-transition="fade">
<h2>Questions?</h2>
<p>Thank you for your attention ;)</p>
<div class="footer">
<p>Xiao Yan (Supervisor: Kuan Liu)</p>
</div>
<div class="quarto-auto-generated-content">
<div class="footer footer-default">
<p>Practicum Term 2 Presentation</p>
</div>
</div>
</section>
</div>
</div>
<script>window.backupDefine = window.define; window.define = undefined;</script>
<script src="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/dist/reveal.js"></script>
<!-- reveal.js plugins -->
<script src="Winter Term Practicum Presentation - Xiao Yan_files/libs/revealjs/plugin/quarto-line-highlight/line-highlight.js"></script>