forked from facebookresearch/DomainBed
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmy_launcher.py
278 lines (249 loc) · 11.3 KB
/
my_launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Run sweeps
"""
import argparse
import copy
import getpass
import hashlib
import json
import os
import random
import shutil
import time
import uuid
import numpy as np
import torch
from domainbed import datasets
from domainbed import hparams_registry
from domainbed import algorithms
from domainbed.lib import misc
from domainbed import command_launchers
import tqdm
import shlex
import itertools
class Job:
NOT_LAUNCHED = 'Not launched'
INCOMPLETE = 'Incomplete'
DONE = 'Done'
def __init__(self, train_args):
self.output_dir = train_args['output_dir']
self.train_args = copy.deepcopy(train_args)
self.extract = self.output_dir + '/' + train_args['extract_feature']
command = ['python', 'main.py']
for k, v in sorted(self.train_args.items()):
if v == '':
command.append(f'--{k} ')
continue
if isinstance(v, list):
v = ' '.join([str(v_) for v_ in v])
elif isinstance(v, str):
v = shlex.quote(v)
command.append(f'--{k} {v}')
self.command_str = ' '.join(command)
if os.path.exists(os.path.join(self.extract, 'done')):
self.state = Job.DONE
elif os.path.exists(self.extract):
self.state = Job.INCOMPLETE
else:
self.state = Job.NOT_LAUNCHED
def __str__(self):
job_info = (self.train_args['dataset'],
self.train_args['algorithm'],
self.train_args['test_envs'],self.train_args['extract_feature'])
return '{}: {} {}'.format(
self.state,
self.extract,
job_info)
@staticmethod
def launch(jobs, launcher_fn,available_list=[0,1,2,3]):
print('Launching...')
jobs = jobs.copy()
#np.random.shuffle(jobs)
print('Making job directories:')
for job in tqdm.tqdm(jobs, leave=False):
os.makedirs(job.output_dir, exist_ok=True)
commands = [job.command_str for job in jobs]
launcher_fn(commands,available_list)
print(f'Launched {len(jobs)} jobs!')
@staticmethod
def delete(jobs):
print('Deleting...')
for job in jobs:
if os.path.isdir(job.extract):
shutil.rmtree(job.extract)
print(f'Deleted {len(jobs)} jobs!')
def all_test_env_combinations(n):
"""
For a dataset with n >= 3 envs, return all combinations of 1 and 2 test
envs.
"""
assert(n >= 3)
for i in range(n):
yield [i]
for j in range(i+1, n):
yield [i, j]
def make_args_list(n_trials, dataset_names, algorithms, n_hparams_from, n_hparams, steps,
data_dir, task, holdout_fraction, single_test_envs, hparams):
args_list = []
for trial_seed in range(n_trials):
for dataset in dataset_names:
for algorithm in algorithms:
if single_test_envs:
all_test_envs = [
[i] for i in range(datasets.num_environments(dataset))]
else:
all_test_envs = all_test_env_combinations(
datasets.num_environments(dataset))
for test_envs in all_test_envs:
for hparams_seed in range(n_hparams_from, n_hparams):
train_args = {}
train_args['dataset'] = dataset
train_args['algorithm'] = algorithm
train_args['test_envs'] = test_envs
train_args['holdout_fraction'] = holdout_fraction
train_args['hparams_seed'] = hparams_seed
train_args['data_dir'] = data_dir
train_args['task'] = task
train_args['trial_seed'] = trial_seed
train_args['seed'] = misc.seed_hash(dataset,
algorithm, test_envs, hparams_seed, trial_seed)
if steps is not None:
train_args['steps'] = steps
if hparams is not None:
train_args['hparams'] = hparams
args_list.append(train_args)
return args_list
def ask_for_confirmation():
response = input('Are you sure? (y/n) ')
if not response.lower().strip()[:1] == "y":
print('Nevermind!')
exit(0)
DATASETS = [d for d in datasets.DATASETS if "Debug" not in d]
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run a sweep')
parser.add_argument('command', choices=['launch', 'delete_incomplete','just_view'])
parser.add_argument('--datasets', nargs='+', type=str, default=DATASETS)
parser.add_argument('--algorithms', nargs='+', type=str, default=algorithms.ALGORITHMS)
parser.add_argument('--task', type=str, default="domain_generalization")
parser.add_argument('--n_hparams_from', type=int, default=0)
parser.add_argument('--n_hparams', type=int, default=20)
#parser.add_argument('--output_dir', type=str, required=True)
#parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--n_trials', type=int, default=3)
parser.add_argument('--command_launcher', type=str, required=True)
parser.add_argument('--steps', type=int, default=None)
parser.add_argument('--hparams', type=str, default=None)
parser.add_argument('--holdout_fraction', type=float, default=0.2)
parser.add_argument('--single_test_envs', action='store_true')
parser.add_argument('--skip_confirmation', action='store_true')
parser.add_argument('--train_algorithm',type=str, default='')
args = parser.parse_args()
debug = False
max_gpu_num = torch.cuda.device_count()
available_list = [_ for _ in range(max_gpu_num)]
algorithm_dict = {}
algorithm_dict['Mixup'] = {'times': 5, 'hparam': {'lr': [1e-4, 5e-5],
'mixup_alpha': [0.1, 0.2]},
'start_step': 0,'freq':2500}
algorithm_dict['GroupDRO'] = {'times':5,'hparam':{'lr':[1e-4,5e-5],
'groupdro_eta':[0.01,0.1]},
'start_step':0,'freq':2500}
algorithm_dict['IRM'] = {'times':5,
'hparam':{'lr':[1e-4,5e-5],
'irm_penalty_anneal_iters':[1000],'irm_lambda':[1,10]},
'start_step':1000,'freq':2500}
algorithm_dict['CORAL'] = {'times':5,
'hparam':{'lr':[1e-4,5e-5],
'mmd_gamma':[0.01,0.1,1]},
'start_step':0,'freq':2500}
algorithm_dict['ERM'] = {'times': 1, 'hparam': {'lr': [1e-4,5e-5]},
'start_step':0,'freq':2500}
# used for debug
# algorithm_dict['CORAL'] = {'times':1,
# 'hparam':{'lr':[5e-5],
# 'mmd_gamma':[0.01,0.1]},
# 'start_step':0,'freq':2500}
# algorithm_dict['ERM'] = {'times': 1, 'hparam': {'lr': [1e-4,5e-5]},
# 'start_step':0,'freq':2500}
if args.train_algorithm:
algorithm_dict_tmp = {}
args.train_algorithm = args.train_algorithm.split(',')
for algorithm in args.train_algorithm:
algorithm_dict_tmp[algorithm] = copy.deepcopy(algorithm_dict[algorithm])
algorithm_dict = algorithm_dict_tmp
args_list = []
dataset_list = ['OfficeHome','VLCS','PACS']
# dataset_list = ['VLCS']
for data_set in dataset_list:
if data_set == 'OfficeHome':
test_env_list = [0,1,2,3]
elif data_set == 'VLCS':
test_env_list = [0,1,2,3]
elif data_set == 'PACS':
test_env_list = [0,1,2,3]
elif data_set == 'ColoredMNIST':
test_env_list = [2]
for test_env in test_env_list:
for alg in algorithm_dict:
hparams = {}
train_args = {}
train_args['algorithm'] = alg
if os.path.exists('domainbed/{}'.format(data_set)):
train_args['data_dir'] = 'domainbed'
else:
train_args['data_dir'] = 'domainbed/datasets'
train_args['algorithm'] = alg
train_args['dataset'] = data_set
train_args['test_envs'] = test_env
train_args['steps'] = 1001 if data_set == 'ColoredMNIST' else 5001
train_args['start_step'] = algorithm_dict[alg]['start_step']
train_args['output_dir'] = 'logs/{}_{}_test_env{}'.format(data_set,alg, test_env)
train_args['output_result_file'] = 'result.csv'
if 'freq' in algorithm_dict[alg]:
train_args['checkpoint_freq'] = algorithm_dict[alg]['freq']
else:
train_args['checkpoint_freq'] = (train_args['steps'] - train_args['start_step'] - 1) // 10
train_args['save_feature_every_checkpoint'] = ''
train_args['skip_model_save'] = ''
train_args['follow_plot'] = ''
param_iter = itertools.product(*list(algorithm_dict[alg]['hparam'].values()))
para_title = algorithm_dict[alg]['hparam'].keys()
for para_comb in param_iter:
# exp_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
for i, key in enumerate(para_title):
hparams[key] = para_comb[i]
raw_hparams = json.dumps(hparams)
hparam_str = raw_hparams.replace('.', '*').replace(':', '=').replace(' ', '').replace(',', '_')
full_times = algorithm_dict[alg]['times']
train_args['hparams'] = raw_hparams
for times in range(full_times):
file_name = "%s_%s_%s" % (alg, hparam_str, times)
train_args['extract_feature'] = file_name
train_args['trial_seed'] = random.randint(100000, 999999)
args_list.append(copy.deepcopy(train_args))
jobs = [Job(train_args) for train_args in args_list]
for job in jobs:
print(job)
print("{} jobs: {} done, {} incomplete, {} not launched.".format(
len(jobs),
len([j for j in jobs if j.state == Job.DONE]),
len([j for j in jobs if j.state == Job.INCOMPLETE]),
len([j for j in jobs if j.state == Job.NOT_LAUNCHED]))
)
if args.command == 'launch':
to_launch = [j for j in jobs if j.state == Job.NOT_LAUNCHED]
print(f'About to launch {len(to_launch)} jobs.')
if not args.skip_confirmation:
ask_for_confirmation()
launcher_fn = command_launchers.REGISTRY[args.command_launcher]
Job.launch(to_launch, launcher_fn,available_list)
elif args.command == 'delete_incomplete':
to_delete = [j for j in jobs if j.state == Job.INCOMPLETE]
print(f'About to delete {len(to_delete)} jobs.')
if not args.skip_confirmation:
ask_for_confirmation()
Job.delete(to_delete)
elif args.command == 'just_view':
pass