-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-config-office31.yaml
39 lines (33 loc) · 1.57 KB
/
test-config-office31.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
data:
dataset:
name: office # choices are ['office', 'officehome', 'caltech-imagenet', 'visda2017']
root_path: /home/yinmingyue/files/Datasets/Office # /path/to/dataset/root
source: 0 # source domain index
target: 1 # target domain index
n_share: 10 # number of classes to be shared
n_source_private: 10 # number of classes in source private domain
n_total: 31 # number of classes in total
dataloader:
class_balance: true # if class_balance when loading datasets
data_workers: 3 # how many workers to use for train dataloaders
batch_size: 36 # batch_size for source domain and target domain respectively
model:
base_model: resnet50 # choices=['resnet50', 'vgg16']
pretrained_model: /home/yinmingyue/.torch/models/resnet50-19c8e357.pth # /path/to/pretrained/model
train:
min_step: 20000 # minimum steps to run. run epochs until it exceeds the minStep
lr: 0.01 # learning rate for new layers. learning rate for finetune is 1/10 of lr
weight_decay: 0.0005 # weight_decay for SGD optimizer
momentum: 0.9 # momentum for SGD optimizer
cut: 1.0 # cut threshold for normalizing weights
test:
test_interval: 500 # interval of two continuous test phase
test_only: True # test a given model and exit
resume_file: ./log/A-D/best.pkl # model to test
misc:
gpus: 1 # how many GPUs to be used, 0 indicates CPU only, needed GPU memory < 8G
gpu_id: "7" # which GPU you want to use
gpu_id_list: [0] # [0,...,gpus-1]
log:
root_dir: log # the log directory (log directory will be {root_dir}/{method}/time/)
log_interval: 10 # steps to log scalars