diff --git a/geochemistrypi/data_mining/model/classification.py b/geochemistrypi/data_mining/model/classification.py index b81edd6..921ca9e 100644 --- a/geochemistrypi/data_mining/model/classification.py +++ b/geochemistrypi/data_mining/model/classification.py @@ -144,24 +144,24 @@ def _classification_report(y_true: pd.DataFrame, y_predict: pd.DataFrame, algori mlflow.log_artifact(os.path.join(store_path, f"Classification Report - {algorithm_name}.txt")) @staticmethod - def _cross_validation(trained_model: object, X_train: pd.DataFrame, y_train: pd.DataFrame, average: str, cv_num: int, algorithm_name: str, store_path: str) -> None: + def _cross_validation(trained_model: object, X_train: pd.DataFrame, graph_name: str, y_train: pd.DataFrame, average: str, cv_num: int, algorithm_name: str, store_path: str) -> None: """Perform cross validation on the model.""" - print("-----* Cross Validation *-----") + print(f"-----* {graph_name} *-----") print(f"K-Folds: {cv_num}") scores = cross_validation(trained_model, X_train, y_train, average=average, cv_num=cv_num) scores_str = json.dumps(scores, indent=4) - save_text(scores_str, f"Cross Validation - {algorithm_name}", store_path) + save_text(scores_str, f"{graph_name} - {algorithm_name}", store_path) @staticmethod - def _plot_confusion_matrix(y_test: pd.DataFrame, y_test_predict: pd.DataFrame, trained_model: object, algorithm_name: str, local_path: str, mlflow_path: str) -> None: + def _plot_confusion_matrix(y_test: pd.DataFrame, y_test_predict: pd.DataFrame, graph_name: str, trained_model: object, algorithm_name: str, local_path: str, mlflow_path: str) -> None: """Plot the confusion matrix of the model.""" - print("-----* Confusion Matrix *-----") + print(f"-----* {graph_name} *-----") data = plot_confusion_matrix(y_test, y_test_predict, trained_model) - save_fig(f"Confusion Matrix - {algorithm_name}", local_path, mlflow_path) + save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path) index = [f"true_{i}" for i in range(int(y_test.nunique().values))] columns = [f"pred_{i}" for i in range(int(y_test.nunique().values))] data = pd.DataFrame(data, columns=columns, index=index) - save_data(data, f"Confusion Matrix - {algorithm_name}", local_path, mlflow_path, True) + save_data(data, f"{graph_name} - {algorithm_name}", local_path, mlflow_path, True) @staticmethod def _plot_precision_recall(X_test: pd.DataFrame, y_test: pd.DataFrame, trained_model: object, graph_name: str, algorithm_name: str, local_path: str, mlflow_path: str) -> None: @@ -190,27 +190,27 @@ def _plot_precision_recall_threshold(X_test: pd.DataFrame, y_test: pd.DataFrame, save_data(thresholds, f"{graph_name} - Thresholds", local_path, mlflow_path) @staticmethod - def _plot_ROC(X_test: pd.DataFrame, y_test: pd.DataFrame, trained_model: object, algorithm_name: str, local_path: str, mlflow_path: str) -> None: - print("-----* ROC Curve *-----") + def _plot_ROC(X_test: pd.DataFrame, y_test: pd.DataFrame, trained_model: object, graph_name: str, algorithm_name: str, local_path: str, mlflow_path: str) -> None: + print(f"-----* {graph_name} *-----") y_probs, fpr, tpr, thresholds = plot_ROC(X_test, y_test, trained_model, algorithm_name) - save_fig(f"ROC Curve - {algorithm_name}", local_path, mlflow_path) + save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path) y_probs = pd.DataFrame(y_probs, columns=["Probabilities"]) fpr = pd.DataFrame(fpr, columns=["False Positive Rate"]) tpr = pd.DataFrame(tpr, columns=["True Positive Rate"]) thresholds = pd.DataFrame(thresholds, columns=["Thresholds"]) - save_data(y_probs, "ROC Curve - Probabilities", local_path, mlflow_path) - save_data(fpr, "ROC Curve - False Positive Rate", local_path, mlflow_path) - save_data(tpr, "ROC Curve - True Positive Rate", local_path, mlflow_path) - save_data(thresholds, "ROC Curve - Thresholds", local_path, mlflow_path) + save_data(y_probs, f"{graph_name} - Probabilities", local_path, mlflow_path) + save_data(fpr, f"{graph_name} - False Positive Rate", local_path, mlflow_path) + save_data(tpr, f"{graph_name} - True Positive Rate", local_path, mlflow_path) + save_data(thresholds, f"{graph_name} - Thresholds", local_path, mlflow_path) @staticmethod - def _plot_2d_decision_boundary(X: pd.DataFrame, X_test: pd.DataFrame, trained_model: object, image_config: dict, algorithm_name: str, local_path: str, mlflow_path: str) -> None: + def _plot_2d_decision_boundary(X: pd.DataFrame, X_test: pd.DataFrame, trained_model: object, graph_name: str, image_config: dict, algorithm_name: str, local_path: str, mlflow_path: str) -> None: """Plot the decision boundary of the trained model with the testing data set below.""" - print("-----* Two-dimensional Decision Boundary Diagram *-----") + print(f"-----* {graph_name} *-----") plot_2d_decision_boundary(X, X_test, trained_model, image_config) - save_fig(f"Decision Boundary - {algorithm_name}", local_path, mlflow_path) - save_data(X, "Decision Boundary - X", local_path, mlflow_path) - save_data(X_test, "Decision Boundary - X Test", local_path, mlflow_path) + save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path) + save_data(X, f"{graph_name} - X", local_path, mlflow_path) + save_data(X_test, f"{graph_name} - X Test", local_path, mlflow_path) @staticmethod def sample_balance(X_train: pd.DataFrame, y_train: pd.DataFrame, local_path: str, mlflow_path: str) -> tuple: