diff --git a/geochemistrypi/data_mining/model/classification.py b/geochemistrypi/data_mining/model/classification.py index 63ab736..30a18e7 100644 --- a/geochemistrypi/data_mining/model/classification.py +++ b/geochemistrypi/data_mining/model/classification.py @@ -148,7 +148,7 @@ def _cross_validation(trained_model: object, X_train: pd.DataFrame, graph_name: """Perform cross validation on the model.""" print(f"-----* {graph_name} *-----") print(f"K-Folds: {cv_num}") - scores = cross_validation(trained_model, X_train, y_train, average=average, cv_num=cv_num) + scores = cross_validation(trained_model, X_train, y_train, graph_name, average=average, cv_num=cv_num) scores_str = json.dumps(scores, indent=4) save_text(scores_str, f"{graph_name} - {algorithm_name}", store_path) @@ -156,7 +156,7 @@ def _cross_validation(trained_model: object, X_train: pd.DataFrame, graph_name: def _plot_confusion_matrix(y_test: pd.DataFrame, y_test_predict: pd.DataFrame, graph_name: str, trained_model: object, algorithm_name: str, local_path: str, mlflow_path: str) -> None: """Plot the confusion matrix of the model.""" print(f"-----* {graph_name} *-----") - data = plot_confusion_matrix(y_test, y_test_predict, trained_model) + data = plot_confusion_matrix(y_test, y_test_predict, trained_model, graph_name) save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path) index = [f"true_{i}" for i in range(int(y_test.nunique().values))] columns = [f"pred_{i}" for i in range(int(y_test.nunique().values))] @@ -194,7 +194,7 @@ def _plot_precision_recall_threshold( @staticmethod def _plot_ROC(X_test: pd.DataFrame, y_test: pd.DataFrame, trained_model: object, graph_name: str, algorithm_name: str, local_path: str, mlflow_path: str) -> None: print(f"-----* {graph_name} *-----") - y_probs, fpr, tpr, thresholds = plot_ROC(X_test, y_test, trained_model, algorithm_name) + y_probs, fpr, tpr, thresholds = plot_ROC(X_test, y_test, trained_model, graph_name, algorithm_name) save_fig(f"{graph_name} - {algorithm_name}", local_path, mlflow_path) y_probs = pd.DataFrame(y_probs, columns=["Probabilities"]) fpr = pd.DataFrame(fpr, columns=["False Positive Rate"]) @@ -284,6 +284,7 @@ def common_components(self) -> None: trained_model=self.model, X_train=ClassificationWorkflowBase.X_train, y_train=ClassificationWorkflowBase.y_train, + graph_name=ClassificationCommonFunction.CROSS_VALIDATION.value, average=average, cv_num=10, algorithm_name=self.naming, @@ -294,6 +295,7 @@ def common_components(self) -> None: y_test_predict=ClassificationWorkflowBase.y_test_predict, name_column=ClassificationWorkflowBase.name_test, trained_model=self.model, + graph_name=ClassificationCommonFunction.CONFUSION_MATRIX.value, algorithm_name=self.naming, local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH, mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH, @@ -324,6 +326,7 @@ def common_components(self) -> None: y_test=ClassificationWorkflowBase.y_test, name_column=ClassificationWorkflowBase.name_test, trained_model=self.model, + graph_name=ClassificationCommonFunction.ROC_CURVE.value, algorithm_name=self.naming, local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH, mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH, @@ -346,6 +349,7 @@ def common_components(self) -> None: name_column2=ClassificationWorkflowBase.name_test, trained_model=self.model, image_config=self.image_config, + graph_name=ClassificationCommonFunction.TWO_DIMENSIONAL_DECISION_BOUNDARY_DIAGRAM.value, algorithm_name=self.naming, local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH, mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH, @@ -372,6 +376,7 @@ def common_components(self, is_automl: bool) -> None: trained_model=self.auto_model, X_train=ClassificationWorkflowBase.X_train, y_train=ClassificationWorkflowBase.y_train, + graph_name=ClassificationCommonFunction.CROSS_VALIDATION.value, average=average, cv_num=10, algorithm_name=self.naming, @@ -382,6 +387,7 @@ def common_components(self, is_automl: bool) -> None: y_test_predict=ClassificationWorkflowBase.y_test_predict, name_column=ClassificationWorkflowBase.name_test, trained_model=self.auto_model, + graph_name=ClassificationCommonFunction.CONFUSION_MATRIX.value, algorithm_name=self.naming, local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH, mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH, @@ -412,6 +418,7 @@ def common_components(self, is_automl: bool) -> None: y_test=ClassificationWorkflowBase.y_test, name_column=ClassificationWorkflowBase.name_test, trained_model=self.auto_model, + graph_name=ClassificationCommonFunction.ROC_CURVE.value, algorithm_name=self.naming, local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH, mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH, @@ -434,6 +441,7 @@ def common_components(self, is_automl: bool) -> None: name_column2=ClassificationWorkflowBase.name_test, trained_model=self.auto_model, image_config=self.image_config, + graph_name=ClassificationCommonFunction.TWO_DIMENSIONAL_DECISION_BOUNDARY_DIAGRAM.value, algorithm_name=self.naming, local_path=GEOPI_OUTPUT_ARTIFACTS_IMAGE_MODEL_OUTPUT_PATH, mlflow_path=MLFLOW_ARTIFACT_IMAGE_MODEL_OUTPUT_PATH, diff --git a/geochemistrypi/data_mining/model/func/algo_classification/_common.py b/geochemistrypi/data_mining/model/func/algo_classification/_common.py index 8d2058c..78031b8 100644 --- a/geochemistrypi/data_mining/model/func/algo_classification/_common.py +++ b/geochemistrypi/data_mining/model/func/algo_classification/_common.py @@ -68,7 +68,7 @@ def score(y_true: pd.DataFrame, y_predict: pd.DataFrame) -> tuple[str, Dict]: return average, scores -def plot_confusion_matrix(y_test: pd.DataFrame, y_test_predict: pd.DataFrame, trained_model: object) -> np.ndarray: +def plot_confusion_matrix(y_test: pd.DataFrame, y_test_predict: pd.DataFrame, trained_model: object, graph_name: str) -> np.ndarray: """Plot the confusion matrix. Parameters @@ -124,7 +124,7 @@ def display_cross_validation_scores(scores: np.ndarray, score_name: str) -> Dict return cv_scores -def cross_validation(trained_model: object, X_train: pd.DataFrame, y_train: pd.DataFrame, average: str, cv_num: int = 10) -> Dict: +def cross_validation(trained_model: object, X_train: pd.DataFrame, y_train: pd.DataFrame, graph_name: str, average: str, cv_num: int = 10) -> Dict: """Evaluate metric(s) by cross-validation and also record fit/score times. Parameters @@ -286,7 +286,7 @@ def plot_precision_recall_threshold(X_test: pd.DataFrame, y_test: pd.DataFrame, return y_probs, precisions, recalls, thresholds -def plot_ROC(X_test: pd.DataFrame, y_test: pd.DataFrame, trained_model: object, algorithm_name: str) -> tuple: +def plot_ROC(X_test: pd.DataFrame, y_test: pd.DataFrame, trained_model: object, graph_name: str, algorithm_name: str) -> tuple: """Plot the ROC curve. Parameters @@ -324,7 +324,7 @@ def plot_ROC(X_test: pd.DataFrame, y_test: pd.DataFrame, trained_model: object, plt.plot([0, 1], [0, 1], "r--") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate (Recall)") - plt.title(f"ROC Curve - {algorithm_name}") + plt.title(f"{graph_name} - {algorithm_name}") return y_probs, fpr, tpr, thresholds