Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Test] V0.7.0 #400

Open
SanyHe opened this issue Nov 5, 2024 · 5 comments
Open

[Test] V0.7.0 #400

SanyHe opened this issue Nov 5, 2024 · 5 comments

Comments

@SanyHe
Copy link
Collaborator

SanyHe commented Nov 5, 2024

No description provided.

@SanyHe
Copy link
Collaborator Author

SanyHe commented Nov 5, 2024

The following diagrams is used for markdown.

image image

@SanyHe
Copy link
Collaborator Author

SanyHe commented Nov 6, 2024

Regression - XGBoost - Manual Hyperparameter Selection - Sany Test

Test Result: Successful

Process Step:

Template -> [Section Name: Option]

  • Built-in Training Data Option: 1
  • Output Data Identifier Column Selection: 1
  • World Map Projection: 1
  • Distribution in World Map: 3
  • Continue World Map: 2
  • Data Selection: [2, 5]
  • Missing Values Process: 1
  • Strategy for Missing Values: 2
  • Imputation Method Option: 3
  • Feature Engineering: 1
  • Feature Engineering: ABC
  • Feature Engineering: b * c - d
  • Continue Feature Engineering: 2
  • Mode Selection: 1
  • Data Segmentation - X Set and Y Set: [2, 4]
  • Data Segmentation - X Set and Y Set: 5
  • Feature Scaling on X Set: 1
  • Feature Scaling on X Set: 3
  • Feature Selection on X set: 1
  • Feature Selection on X set: 1
  • Feature Selection on X set: 2
  • Data Split - Train Set and Test Set: 0.3
  • Model Selection: 9
  • Automated Machine Learning: 2
  • XGBoost - Hyper-parameters Specification
    • N Estimators: 100
    • Learning Rate: 0.5
    • Max Depth: 4
    • Subsample: 0.4
    • Colsample Bytree: 1
    • Alpha: 0.8
    • Lambda: 0.5

Verification Step:

  1. Check If the position of ID matches the correct row in Geochemistrypi+ID
  • Data under the path .../artifacts/data
    • Application Data Feature-Engineering Selected.xlsx ✅
    • Application Data Feature-Engineering.xlsx ❌
    • Application Data Original.xlsx ✅
    • Data Original.xlsx ✅
    • Data Selected Dropped-Imputed Feature-Engineering.xlsx ✅
    • Data Selected Dropped-Imputed.xlsx ✅
    • Data Selected.xlsx ✅
    • X Test.xlsx ✅
    • X Train.xlsx ✅
    • X Without Scaling.xlsx ✅
    • Y.xlsx ✅
    • Y Train.xlsx ✅
    • Y Test.xlsx ✅
  • Data under the path .../artifacts/image/map
    • Map Projection - Al2O3.xlsx ✅
  • Data under the path .../artifacts/image/model_output
    • Permutation Importance - Y Test.xlsx ✅
    • Predicted vs. Actual Diagram - XGBoost.xlsx ✅
    • Residuals Diagram - XGBoost.xlsx ✅
  • Data under the path .../artifacts/image/statistic
    • Correlation Plot.xlsx ✅
    • Distribution Histogram.xlsx ✅
  1. check if the rows in Geochemistrypi+ID match to the corresponding one in Geochemistrypi
  • Data under the path .../artifacts/data
    • Application Data Feature-Engineering Selected.xlsx ✅
    • Application Data Feature-Engineering.xlsx ✅
    • Application Data Original.xlsx ✅
    • Application Data Predicted.xlsx ✅
    • Data Original.xlsx ✅
    • Data Selected Dropped-Imputed Feature-Engineering.xlsx ✅
    • Data Selected Dropped-Imputed.xlsx ✅
    • Data Selected.xlsx ✅
    • X After Feature Selection.xlsx ✅
    • X Test.xlsx ✅
    • Y Train.xlsx ✅
    • X With Scaling.xlsx ✅
    • X Without Scaling.xlsx ✅
    • Y Test Predict.xlsx ✅
    • Y Test.xlsx ✅
    • Y Train Predict.xlsx ✅
    • Y Train.xlsx ✅
    • Y.xlsx ✅
  • Data under the path .../artifacts/image/map
    • Map Projection - Al2O3.xlsx ✅
  • Data under the path .../artifacts/image/model_output
    • Feature Importance - XGBoost.xlsx ✅
    • Permutation Importance - X Test.xlsx ✅
    • Permutation Importance - Y Test.xlsx ✅
    • Predicted vs. Actual Diagram - XGBoost.xlsx ❌
    • Residuals Diagram - XGBoost.xlsx ❌
  • Data under the path .../artifacts/image/statistic
    • Correlation Plot.xlsx ✅
    • Distribution Histogram After Log.xlsx ✅
    • Distribution Histogram.xlsx ✅
    • Probability Plot.xlsx ❌
  • Data under the path .../artifacts
    • Transform Pipeline Configuration.txt ✅
  • Data under the path .../metrics
    • Cross Validation - XGBoost.txt ✅
    • Model Score - XGBoost.txt ✅
  • Data under the path .../parameters
    • Hyper Parameters - XGBoost.txt ✅

@PotatoXi
Copy link
Contributor

Regression - random forest - Automatic Hyperparameter tuning - Jianming Test

Test Result: Successful

Process Step:

Template -> [Section Name: Option]

  • Built-in Training Data Option: 1
  • Output Data Identifier Column Selection: 1
  • World Map Projection: 2
  • Distribution in World Map: 3
  • Continue World Map: 2
  • Data Selection: [2, 5]
  • Missing Values Process: 1
  • Strategy for Missing Values: 2
  • Imputation Method Option: 3
  • Feature Engineering: 1
  • Feature Engineering: ABC
  • Feature Engineering: b * c - d
  • Continue Feature Engineering: 2
  • Mode Selection: 1
  • Data Segmentation - X Set and Y Set: [2, 4]
  • Data Segmentation - X Set and Y Set: 5
  • Feature Scaling on X Set: 1
  • Feature Scaling on X Set: 3
  • Feature Selection on X set: 1
  • Feature Selection on X set: 1
  • Feature Selection on X set: 2
  • Data Split - Train Set and Test Set: 0.3
  • Model Selection: 6
  • Automated Machine Learning: 1
  • random forest - Automatic Hyperparameter tuning

Verification Step:

  1. Check If the position of ID matches the correct row in Geochemistrypi+ID
  • Data under the path

    .../artifacts/data

    • Application Data Feature-Engineering Selected.xlsx ✅
    • Application Data Feature-Engineering.xlsx ✅
    • Application Data Original.xlsx ✅
    • Application Data Predicted.xlsx ❌
    • Data Original.xlsx ✅
    • Data Selected Dropped-Imputed Feature-Engineering.xlsx ✅
    • Data Selected Dropped-Imputed.xlsx ✅
    • Data Selected.xlsx ✅
    • X after feature selection.xlsx ✅
    • X Test.xlsx ✅
    • X Train.xlsx ✅
    • X With Scaling.xlsx ✅
    • X Without Scaling.xlsx ✅
    • Y.xlsx ✅
    • Y Train.xlsx ✅
    • Y Test.xlsx ✅
  • Data under the path

    .../artifacts/image/map

    • Map Projection - Al2O3.xlsx ✅
  • Data under the path

    .../artifacts/image/model_output

    • Permutation Importance - Y Test.xlsx ✅
    • Predicted vs. Actual Diagram - XGBoost.xlsx ✅
    • Residuals Diagram - XGBoost.xlsx ✅
  • Data under the path

    .../artifacts/image/statistic

    • Correlation Plot.xlsx ✅
    • Distribution Histogram.xlsx ✅
  1. check if the rows in Geochemistrypi+ID match to the corresponding one in Geochemistrypi
  • Data under the path

    .../artifacts/data

    • Application Data Feature-Engineering Selected.xlsx ✅
    • Application Data Feature-Engineering.xlsx ✅
    • Application Data Original.xlsx ✅
    • Application Data Predicted.xlsx ✅
    • Data Original.xlsx ✅
    • Data Selected Dropped-Imputed Feature-Engineering.xlsx ✅
    • Data Selected Dropped-Imputed.xlsx ✅
    • Data Selected.xlsx ✅
    • X After Feature Selection.xlsx ✅
    • X Test.xlsx ✅
    • Y Train.xlsx ✅
    • X With Scaling.xlsx ✅
    • X Without Scaling.xlsx ✅
    • Y Test Predict.xlsx ✅
    • Y Test.xlsx ✅
    • Y Train Predict.xlsx ✅
    • Y Train.xlsx ✅
    • Y.xlsx ✅
  • Data under the path

    .../artifacts/image/map

    • Map Projection - Al2O3.xlsx ✅
  • Data under the path

    .../artifacts/image/model_output

    • Feature Importance - XGBoost.xlsx ✅
    • Permutation Importance - X Test.xlsx ✅
    • Permutation Importance - Y Test.xlsx ✅
    • Predicted vs. Actual Diagram - Random Forest❌
    • Residuals Diagram - Random Forest.xlsx ❌
  • Data under the path

    .../artifacts/image/statistic

    • Correlation Plot.xlsx ✅
    • Distribution Histogram After Log.xlsx ✅
    • Distribution Histogram.xlsx ✅
    • Probability Plot.xlsx ✅
  • Data under the path

    .../artifacts

    • Transform Pipeline Configuration.txt ✅
  • Data under the path

    .../metrics

    • Cross Validation - Random Forest.txt ❌
    • Model Score - Random Forest.txt ❌
  • Data under the path

    .../parameters

    • Hyper Parameters - Random Forest.txt ❌

@FAQ-Oblivion
Copy link

FAQ-Oblivion commented Dec 17, 2024

Clustering - DBSCAN - Manual Hyperparameter Selection - PanyanWeng Test

Test Result: Successful

Process Step:

Template -> [Section Name: Option]

  • Built-in Training Data Option: 3
  • Output Data Identifier Column Selection: 1
  • World Map Projection: 2
  • Data Selection: [2, 7]
  • Missing Values Process: 1
  • Strategy for Missing Values: 2
  • Imputation Method Option: 1
  • Feature Engineering: 2
  • Mode Selection: 3
  • Feature Scaling on X Set: 1
  • Feature Scaling on X Set: 1
  • Model Selection: 2
  • DBSCAN - Hyper-parameters Specification
    • Eps: 0.5
    • Min Samples: 5
    • Algorithm: 1
    • Metric: 1
    • Leaf Size: 30
  • 2 Dimensions Data Selection: 1
  • 2 Dimensions Data Selection: 2
  • 3 Dimensions Data Selection: 3
  • 3 Dimensions Data Selection: 4
  • 3 Dimensions Data Selection: 5

Verification Step:

Data under the path .../artifacts/data

  • Cluster Labels - DBSCAN.xlsx:
  • Application Data Feature-Engineering.xlsx:
  • Application Data Original.xlsx:
  • Data Original.xlsx:
  • Data Selected Dropped-Imputed Feature-Engineering.xlsx:
  • Data Selected Dropped-Imputed.xlsx:
  • Data Selected.xlsx:
  • X With Scaling.xlsx:

Data under the path .../artifacts/image/model_output

  • Cluster Three-Dimensional Diagram - DBSCAN.xlsx:
  • Cluster Two-Dimensional Diagram - DBSCAN.xlsx:
  • Silhouette Diagram - Cluster Centers.xlsx:
  • Silhouette Diagram - Data With Labels.xlsx:
  • Silhouette value Diagram - Data With Labels.xlsx:

Data under the path .../artifacts/image/statistic

  • Correlation Plot.xlsx:
  • Distribution Histogram After Log Transformation.xlsx:
  • Distribution Histogram.xlsx:
  • Probability Plot.xlsx:

Check if rows in Geochemistrypi+ID match the corresponding rows in Geochemistrypi

Data under the path .../artifacts/data

  • Cluster Labels - DBSCAN.xlsx:
  • Application Data Feature-Engineering.xlsx:
  • Application Data Original.xlsx:
  • Data Original.xlsx:
  • Data Selected Dropped-Imputed Feature-Engineering.xlsx:
  • Data Selected Dropped-Imputed.xlsx:
  • Data Selected.xlsx:
  • X With Scaling.xlsx:

Data under the path .../artifacts/image/model_output

  • Cluster Three-Dimensional Diagram - DBSCAN.xlsx:
  • Cluster Two-Dimensional Diagram - DBSCAN.xlsx:
  • Silhouette Diagram - Cluster Centers.xlsx:
  • Silhouette Diagram - Data With Labels.xlsx:
  • Silhouette value Diagram - Data With Labels.xlsx:

Data under the path .../artifacts/image/statistic

  • Correlation Plot.xlsx:
  • Distribution Histogram After Log Transformation.xlsx:
  • Distribution Histogram.xlsx:
  • Probability Plot.xlsx:

@HaibinLai
Copy link
Contributor

Anomaly detection - Isolation Forest -Manual Hyperparameter Selection - Haibin Lai Test

Test Result: Successful

Process Step:

Template -> [Section Name: Option]

  • Built-in Training Data Option: 5
  • Output Data Identifier Column Selection: 1
  • World Map Projection: 1
  • Distribution in World Map: 4
  • Continue World Map: 2
  • Data Selection: [2, 5]
  • Missing Values Process: 1
  • Strategy for Missing Values: 2
  • Imputation Method Option: 2
  • Feature Engineering: 1
  • Feature Engineering: ABD
  • Feature Engineering: a + b * d
  • Continue Feature Engineering: 2
  • Mode Selection: 5
  • Feature Selection on X set: 1
  • Feature Selection strategy on X set: 2
  • Model Selection: 1
  • Isolation Forest - Hyper-parameters Specification
    • N Estimators: 100
    • contamination of the data set: 0.3
    • Max Features: 3
    • Bootstrap: 1
    • Max Samples: 64
  • 2 Dimensions Data Selection: 2
  • 2 Dimensions Data Selection: 3
  • 3 Dimensions Data Selection: 1
  • 3 Dimensions Data Selection: 3
  • 3 Dimensions Data Selection: 4

Verification Step:

  1. Check If the position of ID matches the correct row in Geochemistrypi+ID
  • Data under the path .../artifacts/data
    • Data Original.xlsx ✅
    • Data Selected.xlsx ✅
    • Data Selected Dropped-Imputed.xlsx ✅
    • Data Selected Dropped-Imputed Feature-Engineering.xlsx ✅
    • X Abnormal.xlsx ✅ (⚠️ for GeochemistryPI, it's X Anomaly.xlsx with label is_anomaly; For GeochemistryPI + ID, it's X Abnormal.xlsx with label is_abnormal)
    • X Abnormal Detection.xlsx ✅ (⚠️ for GeochemistryPI, it's X Anomaly Detection.xlsx with label is_anomaly; For GeochemistryPI + ID, it's X Abnormal Detection with label is_abnormal)
    • X Normal.xlsx ✅
    • X With Scaling.xlsx ✅
  • Data under the path .../artifacts/image/map
    • Map Projection - SiO2.xlsx ✅
  • Data under the path .../artifacts/image/model_output
    • Anomaly Detection Density Estimation - Isolation Forest.xlsx ✅
    • Anomaly Detection Three-Dimensional Diagram - Isolation Forest.xlsx ✅
    • Anomaly Detection Two-Dimensional Diagram - Isolation Forest..xlsx ✅
  • Data under the path .../artifacts/image/statistic
    • Correlation Plot.xlsx ✅
    • Distribution Histogram After Log Transformation.xlsx ✅
    • Distribution Histogram.xlsx ✅
    • Probability Plot.xlsx ✅
  • Data under the path .../artifacts
    • Transform Pipeline Configuration.txt ✅
  • Data under the path .../metrics
    No Output
  • Data under the path .../parameters
    • Hyper Parameters - Isolation Forest.txt ✅
  1. check if the rows in Geochemistrypi+ID match to the corresponding one in Geochemistrypi
  • Data under the path .../artifacts/data
    • Data Original.xlsx ✅
    • Data Selected.xlsx ✅
    • Data Selected Dropped-Imputed.xlsx ✅
    • Data Selected Dropped-Imputed Feature-Engineering.xlsx ✅
    • X Abnormal.xlsx ✅ (⚠️ for GeochemistryPI, it's X Anomaly.xlsx with label is_anomaly; For GeochemistryPI + ID, it's X Abnormal.xlsx with label is_abnormal)
    • X Abnormal Detection.xlsx ✅ (⚠️ for GeochemistryPI, it's X Anomaly Detection.xlsx with label is_anomaly; For GeochemistryPI + ID, it's X Abnormal Detection with label is_abnormal)
    • X Normal.xlsx ✅
    • X With Scaling.xlsx ✅
  • Data under the path .../artifacts/image/map
    • Map Projection - SiO2.xlsx ✅
  • Data under the path .../artifacts/image/model_output
    • Anomaly Detection Density Estimation - Isolation Forest.xlsx ✅
    • Anomaly Detection Three-Dimensional Diagram - Isolation Forest.xlsx ✅
    • Anomaly Detection Two-Dimensional Diagram - Isolation Forest..xlsx ✅
  • Data under the path .../artifacts/image/statistic
    • Correlation Plot.xlsx ✅
    • Distribution Histogram After Log Transformation.xlsx ✅
    • Distribution Histogram.xlsx ✅
    • Probability Plot.xlsx ✅
  • Data under the path .../artifacts
    • Transform Pipeline Configuration.txt ✅
  • Data under the path .../metrics
    No Output
  • Data under the path .../parameters
    • Hyper Parameters - Isolation Forest.txt ✅

Anomaly detection - Isolation Forest and Local Outlier Factor -Manual Hyperparameter Selection - Haibin Lai Test

Test Result: Successful

Process Step:

Template -> [Section Name: Option]

  • Built-in Training Data Option: 5
  • Output Data Identifier Column Selection: 1
  • World Map Projection: 1
  • Distribution in World Map: 4
  • Continue World Map: 2
  • Data Selection: [2, 5]
  • Missing Values Process: 1
  • Strategy for Missing Values: 2
  • Imputation Method Option: 1
  • Feature Engineering: 2
  • Mode Selection: 5
  • Feature Selection on X set: 1
  • Feature Selection strategy on X set: 1
  • Model Selection: 3
  • Isolation Forest - Hyper-parameters Specification
    • N Estimators: 100
    • contamination of the data set: 0.3
    • Max Features: 3
    • Bootstrap: 1
    • Max Samples: 64
  • 2 Dimensions Data Selection: 2
  • 2 Dimensions Data Selection: 3
  • 3 Dimensions Data Selection: 1
  • 3 Dimensions Data Selection: 3
  • 3 Dimensions Data Selection: 4

Isolation Forest - Hyper-parameters Specification
- N Neighbors: 20
- Leaf Size: 30
- P: 2
- Contamination: 0.3
- N Jobs: 1

  • 2 Dimensions Data Selection: 2
  • 2 Dimensions Data Selection: 3
  • 3 Dimensions Data Selection: 1
  • 3 Dimensions Data Selection: 3
  • 3 Dimensions Data Selection: 4

Verification Step:

  1. Check If the position of ID matches the correct row in Geochemistrypi+ID
  • Data under the path .../artifacts/data
    • Data Original.xlsx ✅
    • Data Selected.xlsx ✅
    • Data Selected Dropped-Imputed.xlsx ✅
    • Data Selected Dropped-Imputed Feature-Engineering.xlsx ✅
    • X With Scaling.xlsx ✅
  • Data under the path .../artifacts/image/map
    • Map Projection - SiO2.xlsx ✅
  • Data under the path .../artifacts/image/model_output
    • No Output file
  • Data under the path .../artifacts/image/statistic
    • Correlation Plot.xlsx ✅
    • Distribution Histogram After Log Transformation.xlsx ✅
    • Distribution Histogram.xlsx ✅
    • Probability Plot.xlsx ✅
  • Data under the path .../artifacts
    • Transform Pipeline Configuration.txt ✅
  • Data under the path .../metrics
    • No Output file ✅
  • Data under the path .../parameters
    • No Output file ✅
  • Data under the path .../summary
    • No Output file ✅
  • Data under the path .../Isolation Forest/artifacts/data
    • X Abnormal.xlsx ✅
    • X Abnormal Dectection.xlsx ✅
    • X Normal.xlsx ✅
  • Data under the path .../Isolation Forest/artifacts/
    • Transform Pipeline Configuration.txt ✅
  • Data under the path .../Isolation Forest/parameters/
    • Hyper Parameters - Isolation Forest.txt ✅
  • Data under the path .../Isolation Forest/artifacts/image/map
    • No Output file ✅
  • Data under the path .../Isolation Forest/artifacts/image/static
    • No Output file ✅
  • Data under the path .../Isolation Forest/artifacts/image/model_output
    • Anomaly Detection Density Estimation - Isolation Forest.xlsx ✅
    • Anomaly Detection Three-Dimensional Diagram - Isolation Forest.xlsx ✅
    • Anomaly Detection Two-Dimensional Diagram - Isolation Forest.xlsx ✅
  • Data under the path .../Local Outlier Factor/metrics
    • No Output file ✅
  • Data under the path .../Local Outlier Factor/parameters
    • No Output file ✅
  • Data under the path .../Local Outlier Factor/summary
    • No Output file ✅
  • Data under the path .../Local Outlier Factor/artifacts/data
    • X Abnormal.xlsx ✅
    • X Abnormal Dectection.xlsx ✅
    • X Normal.xlsx ✅
  • Data under the path .../Local Outlier Factor/artifacts/image/model_output
    • Anomaly Detection Density Estimation - Local Outlier Factor.xlsx ✅
    • Anomaly Detection Three-Dimensional Diagram - Local Outlier Factor.xlsx ✅
    • Anomaly Detection Two-Dimensional Diagram - Local Outlier Factor..xlsx ✅
    • Lof Score Diagram - Local Outlier Factor ✅
  • Data under the path .../Local Outlier Factor/artifacts/image
    • Transform Pipeline Configuration.txt ✅
  1. check if the rows in Geochemistrypi+ID match to the corresponding one in Geochemistrypi
    • Data under the path .../artifacts/data
      • Data Original.xlsx ✅
      • Data Selected.xlsx ✅
      • Data Selected Dropped-Imputed.xlsx ✅
      • Data Selected Dropped-Imputed Feature-Engineering.xlsx ✅
      • X With Scaling.xlsx ✅
  • Data under the path .../artifacts/image/map
    • Map Projection - SiO2.xlsx ✅
  • Data under the path .../artifacts/image/model_output
    • No Output file
  • Data under the path .../artifacts/image/statistic
    • Correlation Plot.xlsx ✅
    • Distribution Histogram After Log Transformation.xlsx ✅
    • Distribution Histogram.xlsx ✅
    • Probability Plot.xlsx ✅
  • Data under the path .../artifacts
    • Transform Pipeline Configuration.txt ✅
  • Data under the path .../metrics
    • No Output file ✅
  • Data under the path .../parameters
    • No Output file ✅
  • Data under the path .../summary
    • No Output file ✅
  • Data under the path .../Isolation Forest/artifacts/data
    • X Abnormal.xlsx ✅
    • X Abnormal Dectection.xlsx ✅
    • X Normal.xlsx ✅
  • Data under the path .../Isolation Forest/artifacts/
    • Transform Pipeline Configuration.txt ✅
  • Data under the path .../Isolation Forest/parameters/
    • Hyper Parameters - Isolation Forest.txt ✅
  • Data under the path .../Isolation Forest/artifacts/image/map
    • No Output file ✅
  • Data under the path .../Isolation Forest/artifacts/image/static
    • No Output file ✅
  • Data under the path .../Isolation Forest/artifacts/image/model_output
    • Anomaly Detection Density Estimation - Isolation Forest.xlsx ✅
    • Anomaly Detection Three-Dimensional Diagram - Isolation Forest.xlsx ✅
    • Anomaly Detection Two-Dimensional Diagram - Isolation Forest.xlsx ✅
  • Data under the path .../Local Outlier Factor/metrics
    • No Output file ✅
  • Data under the path .../Local Outlier Factor/parameters
    • No Output file ✅
  • Data under the path .../Local Outlier Factor/summary
    • No Output file ✅
  • Data under the path .../Local Outlier Factor/artifacts/data
    • X Abnormal.xlsx ✅
    • X Abnormal Dectection.xlsx ✅
    • X Normal.xlsx ✅
  • Data under the path .../Local Outlier Factor/artifacts/image/model_output
    • Anomaly Detection Density Estimation - Local Outlier Factor.xlsx ✅
    • Anomaly Detection Three-Dimensional Diagram - Local Outlier Factor.xlsx ✅
    • Anomaly Detection Two-Dimensional Diagram - Local Outlier Factor..xlsx ✅
    • Lof Score Diagram - Local Outlier Factor ❌
  • Data under the path .../Local Outlier Factor/artifacts/image
    • Transform Pipeline Configuration.txt ✅

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants