-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtry.py
156 lines (139 loc) · 4.7 KB
/
try.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import argparse
import sys
import os
# TODO: find a better way for this?
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import hydra
import json
import numpy as np
import pprint
import time
import torch
import wandb
import yaml
import multiprocessing
from PIL import Image
from easydict import EasyDict
from hydra.utils import get_original_cwd, to_absolute_path
from omegaconf import DictConfig, OmegaConf
from torch.utils.data import DataLoader
from transformers import AutoModel, pipeline, AutoTokenizer, logging
from pathlib import Path
from libero.libero import get_libero_path
from libero.libero.benchmark import get_benchmark
from libero.libero.envs import OffScreenRenderEnv, SubprocVectorEnv
from libero.libero.utils.time_utils import Timer
from libero.libero.utils.video_utils import VideoWriter
from libero.lifelong.algos import *
from libero.lifelong.datasets import get_dataset, SequenceVLDataset, GroupedTaskDataset
from libero.lifelong.metric import (
evaluate_loss,
evaluate_success,
raw_obs_to_tensor_obs,
)
from libero.lifelong.utils import (
control_seed,
safe_device,
torch_load_model,
NpEncoder,
compute_flops,
)
from libero.lifelong.main import get_task_embs
import robomimic.utils.obs_utils as ObsUtils
import robomimic.utils.tensor_utils as TensorUtils
import time
benchmark_map = {
"libero_10": "LIBERO_10",
"libero_spatial": "LIBERO_SPATIAL",
"libero_object": "LIBERO_OBJECT",
"libero_goal": "LIBERO_GOAL",
}
algo_map = {
"base": "Sequential",
"er": "ER",
"ewc": "EWC",
"packnet": "PackNet",
"multitask": "Multitask",
}
policy_map = {
"bc_rnn_policy": "BCRNNPolicy",
"bc_transformer_policy": "BCTransformerPolicy",
"bc_vilt_policy": "BCViLTPolicy",
}
def parse_args():
parser = argparse.ArgumentParser(description="Evaluation Script")
parser.add_argument("--experiment_dir", type=str, default="experiments")
# for which task suite
parser.add_argument(
"--benchmark",
type=str,
required=True,
choices=["libero_10", "libero_spatial", "libero_object", "libero_goal"],
)
parser.add_argument("--task_id", type=int, required=True)
# method detail
parser.add_argument(
"--algo",
type=str,
required=True,
choices=["base", "er", "ewc", "packnet", "multitask"],
)
parser.add_argument(
"--policy",
type=str,
required=True,
choices=["bc_rnn_policy", "bc_transformer_policy", "bc_vilt_policy"],
)
parser.add_argument("--seed", type=int, required=True)
parser.add_argument("--ep", type=int)
parser.add_argument("--load_task", type=int)
parser.add_argument("--device_id", type=int)
parser.add_argument("--save-videos", action="store_true")
# parser.add_argument('--save_dir', type=str, required=True)
args = parser.parse_args()
args.device_id = "cuda:" + str(args.device_id)
args.save_dir = f"{args.experiment_dir}_saved"
if args.algo == "multitask":
assert args.ep in list(
range(0, 50, 5)
), "[error] ep should be in [0, 5, ..., 50]"
else:
assert args.load_task in list(
range(10)
), "[error] load_task should be in [0, ..., 9]"
return args
if __name__ == "__main__":
if multiprocessing.get_start_method(allow_none=True) != "spawn":
multiprocessing.set_start_method("spawn", force=True)
sd, cfg, previous_mask = torch_load_model(
model_path="/home/jiangtao/tianxing/LIBERO-master/experiments/LIBERO_SPATIAL/ER/BCRNNPolicy_seed42/run_039/task9_model_epoch50.pth", map_location="cuda:0"
)
# print(type(cfg))
# pp = pprint.PrettyPrinter(indent=2)
# pp.pprint(cfg)
# print(type(sd))
# print(sd)
env_args = {
"bddl_file_name": "/home/jiangtao/tianxing/LIBERO-master/libero/libero/./bddl_files/libero_spatial/pick_up_the_black_bowl_on_the_wooden_cabinet_and_place_it_on_the_plate.bddl",
"camera_heights": 128,
"camera_widths": 128,
}
env_num = 1
env = SubprocVectorEnv(
[lambda: OffScreenRenderEnv(**env_args) for _ in range(env_num)]
)
env.reset()
env.seed(42)
init_states_path = os.path.join(
"/home/jiangtao/tianxing/LIBERO-master/libero/libero/./init_files", "libero_spatial", "pick_up_the_black_bowl_on_the_wooden_cabinet_and_place_it_on_the_plate.pruned_init"
)
init_states = torch.load(init_states_path)
# print(type(init_states))
# print(init_states.shape)
obs = env.set_init_state(init_states)[0]
print(init_states.shape)
print(obs['agentview_image'].shape)
# 使用 PIL 创建图像
image = Image.fromarray(obs['agentview_image'])
# 保存图像
image.save('output_image.png')