-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLoss.py
97 lines (75 loc) · 3.58 KB
/
Loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
from feature_extractor_vgg import *
class Overall_Loss(nn.Module):
def __init__(self):
super(Overall_Loss, self).__init__()
self.loss = Loss()
def forward(self, HR_C, HR_T, HR, GT, GT_T):
l_1 = self.loss(HR_C, GT)
l_2 = self.loss(HR_T, GT_T)
l_3 = self.loss(HR, GT)
return l_1 + l_2 + l_3
class Loss(nn.Module):
def __init__(self):
super(Loss, self).__init__()
self.L1Loss = nn.L1Loss()
self.MSELoss = nn.MSELoss()
self.grad_loss = GradientLoss() # Sobel
# self.grad_loss = gradientloss() # Laplacian
vgg = vgg19(pretrained=True)
self.loss_network = nn.Sequential(*list(vgg.features.children())[:12])
def forward(self, out_images, target_images):
pixel_loss = self.L1Loss(out_images, target_images)
perceptual_loss = self.MSELoss(self.loss_network(out_images), Variable(self.loss_network(target_images).data,
requires_grad=False))
grad_loss = self.grad_loss(out_images, target_images)
return pixel_loss + perceptual_loss + grad_loss
# Sobel
class GradientLoss(nn.Module):
def __init__(self):
super(GradientLoss, self).__init__()
# Define the kernels for gradient computation in x and y direction
self.kernel_x = torch.tensor([[[[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1]]]], dtype=torch.float32)
self.kernel_y = torch.tensor([[[[-1, -2, -1],
[0, 0, 0],
[1, 2, 1]]]], dtype=torch.float32)
def image_gradients(self, image):
# Ensure the input tensor is on the same device as the model
self.kernel_x = self.kernel_x.to(image.device)
self.kernel_y = self.kernel_y.to(image.device)
# Compute the gradients for the output and target images
grad_x = F.conv2d(image, self.kernel_x, padding=1)
grad_y = F.conv2d(image, self.kernel_y, padding=1)
return grad_x, grad_y
def forward(self, out_images, target_images):
grad_x_out, grad_y_out = self.image_gradients(out_images)
grad_x_target, grad_y_target = self.image_gradients(target_images)
# Calculate the gradient loss as the L1 norm of the gradient difference
grad_loss = torch.mean(torch.abs(grad_x_out - grad_x_target) + torch.abs(grad_y_out - grad_y_target))
return grad_loss
# Laplacian
class LaplaceAlogrithm(nn.Module):
def __init__(self):
super(LaplaceAlogrithm, self).__init__()
def forward(self, image):
assert torch.is_tensor(image) is True
laplace_operator = np.array([[0, 1, 0], [1, -4, 1], [0, 1, 0]], dtype=np.float32)
laplace_operator = torch.from_numpy(laplace_operator).unsqueeze(0).unsqueeze(0).to(image.device)
# laplace_operator = torch.from_numpy(laplace_operator).unsqueeze(0)#if no cuda
image = image - F.conv2d(image, laplace_operator, padding=1, stride=1)
return image
class gradientloss(nn.Module):
def __init__(self):
super(gradientloss, self).__init__()
self.LaplaceAlogrithm = LaplaceAlogrithm()
def forward(self, preds, labels):
grad_img1 = self.LaplaceAlogrithm(preds)
gt = self.LaplaceAlogrithm(labels)
gt.requires_grad_(False)
g_loss = F.l1_loss(grad_img1, gt, size_average=True, reduce=True)
return g_loss