-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
2647 lines (1162 loc) · 70.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html class="theme-next gemini use-motion" lang="zh-Hans">
<head><meta name="generator" content="Hexo 3.8.0">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
<meta name="theme-color" content="#222">
<script>
(function () {
if ('') {
if (prompt('请输入文章密码') !== '') {
alert('密码错误!');
if (history.length === 1) {
location.replace("http://xxxxxxx.xxx"); // 这里替换成你的首页
} else {
history.back();
}
}
}
})();
</script>
<meta http-equiv="Cache-Control" content="no-transform">
<meta http-equiv="Cache-Control" content="no-siteapp">
<link href="/lib/fancybox/source/jquery.fancybox.css?v=2.1.5" rel="stylesheet" type="text/css">
<link href="/lib/font-awesome/css/font-awesome.min.css?v=4.6.2" rel="stylesheet" type="text/css">
<link href="/css/main.css?v=5.1.4" rel="stylesheet" type="text/css">
<link rel="apple-touch-icon" sizes="180x180" href="/images/apple-touch-icon-next.png?v=5.1.4">
<link rel="icon" type="image/png" sizes="32x32" href="/images/favicon-32x32-next.png?v=5.1.4">
<link rel="icon" type="image/png" sizes="16x16" href="/images/favicon-16x16-next.png?v=5.1.4">
<link rel="mask-icon" href="/images/logo.svg?v=5.1.4" color="#222">
<meta name="keywords" content="Hexo, NexT">
<meta property="og:type" content="website">
<meta property="og:title" content="working and learning">
<meta property="og:url" content="http://yoursite.com/index.html">
<meta property="og:site_name" content="working and learning">
<meta property="og:locale" content="zh-Hans">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="working and learning">
<script type="text/javascript" id="hexo.configurations">
var NexT = window.NexT || {};
var CONFIG = {
root: '/',
scheme: 'Gemini',
version: '5.1.4',
sidebar: {"position":"left","display":"post","offset":12,"b2t":false,"scrollpercent":false,"onmobile":false},
fancybox: true,
tabs: true,
motion: {"enable":true,"async":false,"transition":{"post_block":"fadeIn","post_header":"slideDownIn","post_body":"slideDownIn","coll_header":"slideLeftIn","sidebar":"slideUpIn"}},
duoshuo: {
userId: '0',
author: '博主'
},
algolia: {
applicationID: '',
apiKey: '',
indexName: '',
hits: {"per_page":10},
labels: {"input_placeholder":"Search for Posts","hits_empty":"We didn't find any results for the search: ${query}","hits_stats":"${hits} results found in ${time} ms"}
}
};
</script>
<link rel="canonical" href="http://yoursite.com/">
<title>working and learning</title>
</head>
<body itemscope itemtype="http://schema.org/WebPage" lang="zh-Hans">
<div class="container sidebar-position-left
page-home">
<div class="headband"></div>
<header id="header" class="header" itemscope itemtype="http://schema.org/WPHeader">
<div class="header-inner"><div class="site-brand-wrapper">
<div class="site-meta ">
<div class="custom-logo-site-title">
<a href="/" class="brand" rel="start">
<span class="logo-line-before"><i></i></span>
<span class="site-title">working and learning</span>
<span class="logo-line-after"><i></i></span>
</a>
</div>
<p class="site-subtitle">reading notes</p>
</div>
<div class="site-nav-toggle">
<button>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
<span class="btn-bar"></span>
</button>
</div>
</div>
<nav class="site-nav">
<ul id="menu" class="menu">
<li class="menu-item menu-item-home">
<a href="/" rel="section">
<i class="menu-item-icon fa fa-fw fa-home"></i> <br>
首页
</a>
</li>
<li class="menu-item menu-item-about">
<a href="/about/" rel="section">
<i class="menu-item-icon fa fa-fw fa-user"></i> <br>
关于
</a>
</li>
<li class="menu-item menu-item-tags">
<a href="/tags/" rel="section">
<i class="menu-item-icon fa fa-fw fa-tags"></i> <br>
标签
</a>
</li>
<li class="menu-item menu-item-categories">
<a href="/categories/" rel="section">
<i class="menu-item-icon fa fa-fw fa-th"></i> <br>
分类
</a>
</li>
<li class="menu-item menu-item-archives">
<a href="/archives/" rel="section">
<i class="menu-item-icon fa fa-fw fa-archive"></i> <br>
归档
</a>
</li>
</ul>
</nav>
</div>
</header>
<main id="main" class="main">
<div class="main-inner">
<div class="content-wrap">
<div id="content" class="content">
<section id="posts" class="posts-expand">
<article class="post post-type-normal" itemscope itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2019/07/09/在jupyter-notebook里添加R-kernel/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="name" content="Chenhaha">
<meta itemprop="description" content>
<meta itemprop="image" content="/images/avatar.gif">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="working and learning">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a class="post-title-link" href="/2019/07/09/在jupyter-notebook里添加R-kernel/" itemprop="url">在jupyter notebook里添加R kernel</a></h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2019-07-09T16:40:58+08:00">
2019-07-09
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/r/" itemprop="url" rel="index">
<span itemprop="name">r</span>
</a>
</span>
</span>
<span id="busuanzi_container_page_pv">
<span class="post-meta-divider">|<span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>阅读量: <span id="busuanzi_value_page_pv"></span>次
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
38 字
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
1 分钟
</span>
</div>
</span></span></div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="1、Installing-via-CRAN"><a href="#1、Installing-via-CRAN" class="headerlink" title="1、Installing via CRAN"></a>1、Installing via CRAN</h2><p>系统环境:windows 7</p>
<p><code>install.packages('IRkernel')</code></p>
<h2 id="2、-Making-the-kernel-available-to-Jupyter"><a href="#2、-Making-the-kernel-available-to-Jupyter" class="headerlink" title="2、 Making the kernel available to Jupyter"></a>2、 Making the kernel available to Jupyter</h2><p><code>IRkernel::installspec()</code></p>
<p><code>IRkernel::installspec(user = FALSE)</code></p>
<p>参考文献:</p>
<p><<a href="https://irkernel.github.io/installation/" target="_blank" rel="noopener">https://irkernel.github.io/installation/</a>></p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</div>
</article>
<article class="post post-type-normal" itemscope itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2019/07/02/jupyter-notebook修改默认启动目录/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="name" content="Chenhaha">
<meta itemprop="description" content>
<meta itemprop="image" content="/images/avatar.gif">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="working and learning">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a class="post-title-link" href="/2019/07/02/jupyter-notebook修改默认启动目录/" itemprop="url">jupyter notebook修改默认启动目录</a></h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2019-07-02T10:11:32+08:00">
2019-07-02
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/python/" itemprop="url" rel="index">
<span itemprop="name">python</span>
</a>
</span>
</span>
<span id="busuanzi_container_page_pv">
<span class="post-meta-divider">|<span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>阅读量: <span id="busuanzi_value_page_pv"></span>次
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
164 字
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
1 分钟
</span>
</div>
</span></span></div>
</header>
<div class="post-body" itemprop="articleBody">
<p> 在windows系统中第一次使用Jupyter Notebook时,它默认打开windows的C盘目录,并以此作为它的默认工作目录。为避免后期开发Jupyter Notebook生成的相关文件消耗C盘存储空间,我们需要修改它的默认工作目录。</p>
<h1 id="Jupyter-Notebook-默认工作界面"><a href="#Jupyter-Notebook-默认工作界面" class="headerlink" title="Jupyter Notebook 默认工作界面"></a>Jupyter Notebook 默认工作界面</h1><p><img src="/images/jupyterNotebookDefault.png" alt></p>
<h1 id="生成配置文件"><a href="#生成配置文件" class="headerlink" title="生成配置文件"></a>生成配置文件</h1><p>打开Anaconda Prompt,输入如下命令:</p>
<p><code>jupyter notebook --generate-config</code></p>
<p><img src="/images/jupyterNotebookConfig.png" alt></p>
<h1 id="修改配置文件"><a href="#修改配置文件" class="headerlink" title="修改配置文件"></a>修改配置文件</h1><p>打开jupyter_notebook_config.py文件,全局搜索notebook_dir,并修改其内容,得到下图</p>
<p><img src="/images/jupyter_notebook修改默认启动目录3.png" alt></p>
<h2 id="修改JupyterNotebook快捷方式的目标属性"><a href="#修改JupyterNotebook快捷方式的目标属性" class="headerlink" title="修改JupyterNotebook快捷方式的目标属性"></a>修改JupyterNotebook快捷方式的目标属性</h2><p>右击JupyterNotebook快捷方式,选择【属性】,删除【目标】属性中的【%USERPROFILE%】,点击【应用】–【确定】。</p>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</div>
</article>
<article class="post post-type-normal" itemscope itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2019/05/15/cv-goodFeaturesToTrack-函数/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="name" content="Chenhaha">
<meta itemprop="description" content>
<meta itemprop="image" content="/images/avatar.gif">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="working and learning">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a class="post-title-link" href="/2019/05/15/cv-goodFeaturesToTrack-函数/" itemprop="url">cv.goodFeaturesToTrack()函数</a></h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2019-05-15T20:30:46+08:00">
2019-05-15
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/opencv/" itemprop="url" rel="index">
<span itemprop="name">opencv</span>
</a>
</span>
</span>
<span id="busuanzi_container_page_pv">
<span class="post-meta-divider">|<span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>阅读量: <span id="busuanzi_value_page_pv"></span>次
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
306 字
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
1 分钟
</span>
</div>
</span></span></div>
</header>
<div class="post-body" itemprop="articleBody">
<h1 id="cv-goodFeaturesToTrack"><a href="#cv-goodFeaturesToTrack" class="headerlink" title="cv.goodFeaturesToTrack()"></a>cv.goodFeaturesToTrack()</h1><p>与Harris Corner Detector 相比显示出更好的结果</p>
<p><code>corners = cv.goodFeaturesToTrack( image, maxCorners, qualityLevel, minDistance[, corners[, mask[, blockSize[, useHarrisDetector[, k]]]]] )</code></p>
<h2 id="参数"><a href="#参数" class="headerlink" title="参数"></a>参数</h2><ul>
<li><p>image:输入8-bit或者浮点32位单通道图像</p>
</li>
<li><p>corners:检测到的角落的输出向量</p>
</li>
<li><p>maxCorners:要返回的最大角数。如果角落多于找到的角落,则返回最大的角落。maxCorners<=0意味着不设置最大值限制并返回所有检测到的角点</p>
</li>
<li>qualityLevel:表征图像角落的最小可接受质量。参数值乘以最佳拐角质量度量,即最小特征值或Harris函数响应。质量测量小于产品的角落被拒绝。例如,如果最佳角点的质量度量为2000,质量等级为0.01,则质量度量小于15的所有角落都被拒绝。</li>
<li>minDistance:返回角落的最小可能欧几里德距离</li>
<li>mask:可选的感兴趣区域。如果图像不为空(它需要类型为CV_8UC1冰盒输入图像一样的大小),则它指定检测的角区域</li>
<li>BLOCKSIZE:用于计算每个像素领域上的derivative covariation matrix 的平均块大小</li>
<li>useHarrisDetector:指示是否使用Harris检测器</li>
<li>k:Harris检测器的自由参数</li>
</ul>
</div>
<footer class="post-footer">
<div class="post-eof"></div>
</footer>
</div>
</article>
<article class="post post-type-normal" itemscope itemtype="http://schema.org/Article">
<div class="post-block">
<link itemprop="mainEntityOfPage" href="http://yoursite.com/2019/05/14/cv-cornerHarris-函数/">
<span hidden itemprop="author" itemscope itemtype="http://schema.org/Person">
<meta itemprop="name" content="Chenhaha">
<meta itemprop="description" content>
<meta itemprop="image" content="/images/avatar.gif">
</span>
<span hidden itemprop="publisher" itemscope itemtype="http://schema.org/Organization">
<meta itemprop="name" content="working and learning">
</span>
<header class="post-header">
<h1 class="post-title" itemprop="name headline">
<a class="post-title-link" href="/2019/05/14/cv-cornerHarris-函数/" itemprop="url">cv.cornerHarris()函数</a></h1>
<div class="post-meta">
<span class="post-time">
<span class="post-meta-item-icon">
<i class="fa fa-calendar-o"></i>
</span>
<span class="post-meta-item-text">发表于</span>
<time title="创建于" itemprop="dateCreated datePublished" datetime="2019-05-14T16:46:35+08:00">
2019-05-14
</time>
</span>
<span class="post-category">
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-folder-o"></i>
</span>
<span class="post-meta-item-text">分类于</span>
<span itemprop="about" itemscope itemtype="http://schema.org/Thing">
<a href="/categories/opencv/" itemprop="url" rel="index">
<span itemprop="name">opencv</span>
</a>
</span>
</span>
<span id="busuanzi_container_page_pv">
<span class="post-meta-divider">|<span>
<span class="post-meta-item-icon">
<i class="fa fa-eye"></i>
</span>阅读量: <span id="busuanzi_value_page_pv"></span>次
</span>
<div class="post-wordcount">
<span class="post-meta-item-icon">
<i class="fa fa-file-word-o"></i>
</span>
<span class="post-meta-item-text">字数统计:</span>
<span title="字数统计">
872 字
</span>
<span class="post-meta-divider">|</span>
<span class="post-meta-item-icon">
<i class="fa fa-clock-o"></i>
</span>
<span class="post-meta-item-text">阅读时长 ≈</span>
<span title="阅读时长">
3 分钟
</span>
</div>
</span></span></div>
</header>
<div class="post-body" itemprop="articleBody">
<h2 id="哈里斯边角侦测"><a href="#哈里斯边角侦测" class="headerlink" title="哈里斯边角侦测"></a>哈里斯边角侦测</h2><p>哈里斯边角侦测(Harris Corner Detector)是被广泛运用在电脑死机的演算法,主要是用于从影像中找出代表边角的特征点。</p>
<h2 id="概要介绍"><a href="#概要介绍" class="headerlink" title="概要介绍"></a>概要介绍</h2><p> 角落的概念是它相邻的区域有两条截然不同方向的边,换句话说,角落也是两条边的连接点,而这条边的附近有剧烈的亮度变化。</p>
<p> 为了找出影响中的边角,科学家们提出了不同种的边角测试器包含Kanade-Lucas-Tomasi(KLT)算子,哈里斯算子是其中最简单,有效,及可信赖的方法。这两种受欢迎的方法均是以局部结构矩阵来当作基础,想较于Kanade-Lucas-Tomasi(KLT)边角侦测,就算是影响经过旋转或者是亮度的调整,哈里斯边角侦测具有良好的结果重现性。</p>
<h2 id="函数"><a href="#函数" class="headerlink" title="函数"></a>函数</h2><p><code>dst=cv.cornerHarris(src, blockSize, ksize, k[, dst[, borderType]])</code></p>
<h3 id="参数"><a href="#参数" class="headerlink" title="参数"></a>参数</h3><ul>
<li>src:输入图像(应该是灰度和float32类型)</li>
<li>dst:存储Harris探测器响应的图像,类型为CV_32FC1,图像大小与src相同</li>
<li>blockSize:领域大小</li>
<li>ksize:Sobel算子的孔径参数</li>
<li>k:哈里斯探测器自由参数</li>
<li>borderType:像素外推法</li>
</ul>
<figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br><span class="line">2</span><br><span class="line">3</span><br><span class="line">4</span><br><span class="line">5</span><br><span class="line">6</span><br><span class="line">7</span><br><span class="line">8</span><br><span class="line">9</span><br><span class="line">10</span><br><span class="line">11</span><br><span class="line">12</span><br><span class="line">13</span><br><span class="line">14</span><br><span class="line">15</span><br><span class="line">16</span><br><span class="line">17</span><br><span class="line">18</span><br><span class="line">19</span><br><span class="line">20</span><br><span class="line">21</span><br></pre></td><td class="code"><pre><span class="line">import cv2</span><br><span class="line">import numpy as np</span><br><span class="line"></span><br><span class="line">filename = 'chessboard.png'</span><br><span class="line">img = cv2.imread(filename)</span><br><span class="line"></span><br><span class="line">gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)</span><br><span class="line"></span><br><span class="line">gray = np.float32(gray)</span><br><span class="line">dst = cv2.cornerHarris(gray,2,3,0.04)</span><br><span class="line"></span><br><span class="line"></span><br><span class="line"># result is dilated for marking the corners, not important</span><br><span class="line">dst = cv2.dilate(dst,None)</span><br><span class="line"></span><br><span class="line"># Threshold for an optimal value, it may vary depending on the image</span><br><span class="line">img[dst>0.01*dst.max()]=[0,0,255]</span><br><span class="line"></span><br><span class="line">cv2.imshow('dst',img)</span><br><span class="line">if cv2.waitKey(0) & Oxff == 27:</span><br><span class="line"> cv2.destroyAllWindows()</span><br></pre></td></tr></table></figure>
<p>输入图片:</p>
<p><img src="/images/chessboard.png" alt></p>
<p><img src="/images/chess1.jpg" alt></p>
<p>结果图(需要方大才看得清楚):</p>
<p><img src="/images/chessboard_result.jpg" alt></p>
<p><img src="/images/chessboard_result1.jpg" alt></p>
<p>有时可能需要以最高精度找到角落。opencv附带了一个函数cv2.cornerSubPix(),它进一步以亚精度检测到的角点。该函数迭代以找到角点或径向鞍点的亚像素精度位置</p>
<figure class="highlight plain"><table><tr><td class="gutter"><pre><span class="line">1</span><br></pre></td><td class="code"><pre><span class="line">corners = cv.cornerSubPix( image, corners, winSize, zeroZone, criteria )</span><br></pre></td></tr></table></figure>
<ul>