forked from Jeff-Zilence/VIGOR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_from_npy.py
347 lines (293 loc) · 16 KB
/
evaluate_from_npy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os,sys
from models import SAFA, SAFA_delta_validate, clean_siamese_delta_validate
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import cv2
from dataloader import DataLoader
import random
# delta generation and RGradCAM visualization from https://github.com/Jeff-Zilence/Explain_Metric_Learning
class ExplanationGenerator:
def __init__(self, mode='CVUSA',delta=False,path=None):
self.mode = mode
self.size_sat = [320, 320]
self.size_grd = [320, 640]
self.ori_size_sat = [640,640]
self.ori_size_grd = [1024,2048]
self.load_model(delta=delta,path=path)
self.Decomposition = None
# read image, subtract bias, convert to rgb for imshow
def read(self, path, size):
image = cv2.imread(path).astype(np.float)
image = cv2.resize(image,(size[1],size[0]))
image_show = image[:,:,::-1]/255.
image = image - np.array([103.939, 116.779, 123.6])
return np.expand_dims(image,axis=0), image_show
def get_input_from_path(self, path_1, path_2):
'''
load two images from paths
sat denotes satallite (Aerial view) and grd denotes ground (Street view)
'''
inputs_sat, image_sat = self.read(path_1, size=self.size_sat)
inputs_grd, image_grd = self.read(path_2, size=self.size_grd)
return inputs_sat, image_sat, inputs_grd, image_grd
def load_model(self, path = None, delta=False):
'''
Load the trained model, you may change the path of model here.
Get the cosine similarity and parameters of fc layer
'''
self.sat_x = tf.placeholder(tf.float32, [None, self.size_sat[0], self.size_sat[1], 3], name='sat_x')
self.grd_x = tf.placeholder(tf.float32, [None, self.size_grd[0], self.size_grd[1], 3], name='grd_x')
self.keep_prob = tf.placeholder(tf.float32)
self.index = tf.placeholder(tf.float32, [4096], name='grd_x')
if delta:
if 'clean' in self.mode:
self.sat_global, self.grd_global, self.sat_local, self.grd_local, self.delta = clean_siamese_delta_validate(
self.sat_x, self.grd_x, out_dim=100 if 'classification' in self.mode else 2)
else:
self.sat_global, self.grd_global, self.sat_local, self.grd_local, self.delta = SAFA_delta_validate(
self.sat_x, self.grd_x, out_dim=100 if 'classification' in self.mode else 2)
else:
self.sat_global, self.grd_global, self.fc_sat, self.fc_grd, self.sat_local, self.grd_local = SAFA(self.sat_x, self.grd_x, original=True)
self.product = tf.reduce_sum(self.sat_global*self.grd_global,axis=1)
self.product_ori = tf.reduce_sum(self.fc_sat*self.fc_grd,axis=1)
self.product_index = tf.reduce_sum(self.fc_sat*self.fc_grd*self.index,axis=1)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=None)
print('load model...')
saver.restore(self.sess, path)
print("Model loaded from: %s" % path)
def imshow_convert(self, raw):
'''
convert the heatmap for imshow
'''
heatmap = np.array(cv2.applyColorMap(np.uint8(255*(1.-raw)), cv2.COLORMAP_JET))
return heatmap
def GradCAM(self, sess, cost , target, feed_dict, size):
gradient = tf.gradients(cost, target)[0]
conv_output, conv_first_grad = sess.run([target, gradient], feed_dict=feed_dict)
# compute the average value
weights = np.mean(conv_first_grad[0], axis = (0, 1))
grad_CAM_map = np.sum(weights*conv_output[0], axis=2)
# Passing through ReLU
cam = np.maximum(grad_CAM_map, 0)
cam = cam / np.max(cam) # scale 0 to 1.0
cam = cv2.resize(cam, (size[1],size[0]))
return cam
def RGradCAM(self, sess, cost , target, feed_dict, size):
# rectified Grad-CAM, a variant
gradient = tf.gradients(cost, target)[0]
conv_output, conv_first_grad = sess.run([target, gradient], feed_dict=feed_dict)
# remove the heuristic GAP step
weights = conv_first_grad[0]
grad_CAM_map = np.sum(weights*conv_output[0], axis=2)
# Passing through ReLU
cam = np.maximum(grad_CAM_map, 0)
cam = cam / np.max(cam) # scale 0 to 1.0
cam = cv2.resize(cam, (size[1], size[0]))
return cam
def visualize(self, path_1, path_2, show = True,delta=None):
inputs_sat, image_1, inputs_grd, image_2 = self.get_input_from_path(path_1=path_1, path_2=path_2)
feed_dict = {self.sat_x: inputs_sat, self.grd_x: inputs_grd}
sat_global_val, grd_global_val = self.sess.run([self.sat_global,self.grd_global], feed_dict=feed_dict)
product_vector = sat_global_val * grd_global_val
product_order = np.argsort(product_vector[0])
# Grad-CAM
gradcam_1 = self.GradCAM(sess=self.sess, cost=self.product_ori, target=self.sat_local, feed_dict=feed_dict,
size=self.size_sat)
gradcam_2 = self.GradCAM(sess=self.sess, cost=self.product_ori, target=self.grd_local, feed_dict=feed_dict,
size=self.size_grd)
if show:
image_overlay_1 = image_1 * 0.7 + self.imshow_convert(gradcam_1) / 255.0 * 0.3
image_overlay_2 = image_2 * 0.7 + self.imshow_convert(gradcam_2) / 255.0 * 0.3
plt.figure()
plt.suptitle('Grad-CAM')
plt.subplot(2, 2, 1)
# plt.imshow(self.imshow_convert(gradcam_1))
plt.imshow(gradcam_1)
plt.subplot(2, 2, 2)
plt.imshow(self.imshow_convert(gradcam_2))
plt.subplot(2, 2, 3)
plt.imshow(cv2.resize(image_overlay_1,(self.ori_size_sat[1],self.ori_size_sat[0])))
if delta is not None:
plt.plot(320.-delta[1], 320.+delta[0],'ro',markersize = 7)
plt.subplot(2, 2, 4)
plt.imshow(cv2.resize(image_overlay_2,(self.ori_size_grd[1],self.ori_size_grd[0])))
# RGrad-CAM
rgradcam_1 = self.RGradCAM(sess=self.sess, cost=self.product_ori, target=self.sat_local, feed_dict=feed_dict,
size=self.size_sat)
rgradcam_2 = self.RGradCAM(sess=self.sess, cost=self.product_ori, target=self.grd_local, feed_dict=feed_dict,
size=self.size_grd)
if show:
image_overlay_1 = image_1 * 0.7 + self.imshow_convert(rgradcam_1) / 255.0 * 0.3
image_overlay_2 = image_2 * 0.7 + self.imshow_convert(rgradcam_2) / 255.0 * 0.3
plt.figure()
plt.suptitle('RGrad-CAM')
plt.subplot(2, 2, 1)
plt.imshow(self.imshow_convert(rgradcam_1))
plt.subplot(2, 2, 2)
plt.imshow(self.imshow_convert(rgradcam_2))
plt.subplot(2, 2, 3)
plt.imshow(cv2.resize(image_overlay_1, (self.ori_size_sat[1],self.ori_size_sat[0])))
if delta is not None:
plt.plot(320.-delta[1], 320.+delta[0],'ro',markersize = 7)
plt.subplot(2, 2, 4)
plt.imshow(cv2.resize(image_overlay_2, (self.ori_size_grd[1],self.ori_size_grd[0])))
return [gradcam_1,gradcam_2],[rgradcam_1,rgradcam_2]
def get_delta(self, data_loader, order_list,name='delta_freeze.npy'):
delta_list = []
while True:
batch_sat, batch_grd, batch_list = data_loader.next_pair_scan_order(20,order_list)
if batch_sat is None:
break
if batch_list[0] % 100 == 0:
print(batch_list[0])
feed_dict = {self.sat_x: batch_sat, self.grd_x: batch_grd}
delta_val = self.sess.run(self.delta, feed_dict=feed_dict)
delta_list.extend(delta_val)
delta_list = np.array(delta_list)
delta_list = delta_list *320.
np.save(name,delta_list)
return delta_list
# compute the distance between two locations [Lat_A,Lng_A], [Lat_B,Lng_B]
def gps2distance(Lat_A,Lng_A,Lat_B,Lng_B):
# https://en.wikipedia.org/wiki/Great-circle_distance
lat_A = Lat_A * np.pi/180.
lat_B = Lat_B * np.pi/180.
lng_A = Lng_A * np.pi/180.
lng_B = Lng_B * np.pi/180.
R = 6371004.
C = np.sin(lat_A)*np.sin(lat_B) + np.cos(lat_A)*np.cos(lat_B)*np.cos(lng_A-lng_B)
distance = R*np.arccos(C)
return distance
# compute the delta unit for each reference location [Lat, Lng], 320 is half of the image width
# 0.114 is resolution in meter
# reverse equation from gps2distance: https://en.wikipedia.org/wiki/Great-circle_distance
def Lat_Lng(Lat_A, Lng_A, distance=[320*0.114, 320*0.114]):
if distance[0] == 0 and distance[1] == 0:
return np.zeros(2)
lat_A = Lat_A * np.pi/180.
lng_A = Lng_A * np.pi/180.
R = 6371004.
C_lat = np.cos(distance[0]/R)
C_lng = np.cos(distance[1]/R)
delta_lat = np.arccos(C_lat)
delta_lng = np.arccos((C_lng-np.sin(lat_A)*np.sin(lat_A))/np.cos(lat_A)/np.cos(lat_A))
return np.array([delta_lat * 180. / np.pi, delta_lng * 180. / np.pi])
def generate_distances(data_loader, order_list, delta_list):
distance_list = []
for i in range(data_loader.test_data_size):
truth_gps = np.array(data_loader.test_list[i].split(',')[1:3]).astype(np.float)
prediction_name = data_loader.test_sat_list[order_list[i]]
prediction_gps_center = np.array(prediction_name.replace('.png','').split('_')[1:3]).astype(np.float)
prediction_gps_delta = - Lat_Lng(prediction_gps_center[0],prediction_gps_center[1]) * delta_list[i] / 320.
prediction_gps = prediction_gps_center + prediction_gps_delta
distance = gps2distance(truth_gps[0],truth_gps[1],prediction_gps[0],prediction_gps[1])
distance_list.append(distance)
return np.array(distance_list)
def distance_accuracy(distance_list):
accuracy_list = []
threshold_list = []
for i in range(1,500):
threshold = 1.1**(i/5.)
accuracy_list.append(np.sum((distance_list< threshold)*1.)/distance_list.shape[0])
threshold_list.append(threshold)
return np.array(threshold_list), np.array(accuracy_list)
# for simulation of noisy GPS
def generate_noisy_dict(data_loader):
noisy_dict = {}
search_distance = 200
sat_lat_list = []
sat_lng_list = []
distance_list = []
for j, sat in enumerate(data_loader.test_sat_list):
sat_lat_list.append(np.array(sat.replace('.png', '').split('_')[-2]).astype(np.float))
sat_lng_list.append(np.array(sat.replace('.png', '').split('_')[-1]).astype(np.float))
sat_lat_list = np.array(sat_lat_list)
sat_lng_list = np.array(sat_lng_list)
for i in range(data_loader.test_data_size):
if i % 1000 == 0:
print(i)
name = data_loader.test_list[i]
lat = np.array(name.split('/')[-1].split(',')[-3]).astype(np.float)
lng = np.array(name.split('/')[-1].split(',')[-2]).astype(np.float)
noisy_lat = lat + random.uniform(-1, 1) * data_loader.delta_unit[0] * 100 / (320 * 0.114)
noisy_lng = lng + random.uniform(-1, 1) * data_loader.delta_unit[1] * 100 / (320 * 0.114)
lat_lower = noisy_lat - data_loader.delta_unit[0] * search_distance / (320 * 0.114)
lat_upper = noisy_lat + data_loader.delta_unit[0] * search_distance / (320 * 0.114)
lng_lower = noisy_lng - data_loader.delta_unit[1] * search_distance / (320 * 0.114)
lng_upper = noisy_lng + data_loader.delta_unit[1] * search_distance / (320 * 0.114)
lat_logit = (sat_lat_list > lat_lower) * (sat_lat_list < lat_upper)
lng_logit = (sat_lng_list > lng_lower) * (sat_lng_list < lng_upper)
where = np.where(lat_logit * lng_logit)
noisy_dict[i] = where[0]
distance = gps2distance(lat, lng, noisy_lat, noisy_lng)
distance_list.append(distance)
# np.save('./data/noisy_dict_cross_200.npy', noisy_dict)
# np.save('./data/noisy_distance_cross.npy',np.array(distance_list))
return noisy_dict
def meter_level_localization_from_npy(load_path=None,show=True):
data_loader = DataLoader(same_area=True)
# =======================================================================================
load_path = './data/same_area/Overall'
# uncomment this if you want to generate delta from checkpoints
# generator = ExplanationGenerator(delta=True, path='model path')
sat_descriptor = np.load(os.path.join(load_path, 'sat_global_descriptor.npy'))
grd_descriptor = np.load(os.path.join(load_path, 'grd_global_descriptor.npy'))
similarity = np.matmul(grd_descriptor, np.transpose(sat_descriptor))
order_list = np.argmax(similarity, axis=1)
del(similarity)
# uncomment this if you want to generate delta from checkpoints, prediction order list is needed to generate delta
# delta_list = generator.get_delta(data_loader,order_list,name='./data/delta_same_regression.npy')
delta_list = np.load('./data/same_area/Overall/delta_same_regression.npy')
distance_list = generate_distances(data_loader, order_list, delta_list)
threshold_list, accuracy_list = distance_accuracy(distance_list)
# =======================================================================================
# delta = 0 when there is no offset prediction, always use the center as the predicted location
delta_list_center = np.zeros([data_loader.test_data_size, 2])
load_path = './data/same_area/SAFA_Mining'
sat_descriptor = np.load(os.path.join(load_path, 'sat_global_descriptor.npy'))
grd_descriptor = np.load(os.path.join(load_path, 'grd_global_descriptor.npy'))
similarity = np.matmul(grd_descriptor, np.transpose(sat_descriptor))
order_list = np.argmax(similarity, axis=1)
del(similarity)
distance_list = generate_distances(data_loader, order_list, delta_list_center)
threshold_list, accuracy_list_binary = distance_accuracy(distance_list)
# =======================================================================================
load_path = './data/same_area/SAFA'
sat_descriptor = np.load(os.path.join(load_path, 'sat_global_descriptor.npy'))
grd_descriptor = np.load(os.path.join(load_path, 'grd_global_descriptor.npy'))
similarity = np.matmul(grd_descriptor, np.transpose(sat_descriptor))
order_list = np.argmax(similarity, axis=1)
del(similarity)
distance_list = generate_distances(data_loader, order_list, delta_list_center)
threshold_list, accuracy_list_safa = distance_accuracy(distance_list)
# =======================================================================================
load_path = './data/same_area/Siamese_VGG'
sat_descriptor = np.load(os.path.join(load_path, 'sat_global_descriptor.npy'))
grd_descriptor = np.load(os.path.join(load_path, 'grd_global_descriptor.npy'))
similarity = np.matmul(grd_descriptor, np.transpose(sat_descriptor))
order_list = np.argmax(similarity, axis=1)
del(similarity)
distance_list = generate_distances(data_loader, order_list, delta_list_center)
threshold_list, accuracy_list_siamese = distance_accuracy(distance_list)
# =======================================================================================
if show:
n = np.argmin(np.abs(threshold_list-10))
plt.plot(threshold_list, accuracy_list_siamese * 100., '-c')
plt.plot(threshold_list, accuracy_list_safa * 100., '-m')
plt.plot(threshold_list, accuracy_list_binary * 100., '-g')
plt.plot(threshold_list, accuracy_list * 100., '-r')
plt.legend(['Siamese-VGG','SAFA','SAFA+Mining','Ours'],loc=2,fontsize=12)
plt.ylabel('Accuracy (%)', FontSize = 16)
plt.xlabel('Threshold (m)', FontSize = 16)
plt.axis([1,40,0,55])
plt.grid(linestyle='dotted')
plt.tight_layout()
plt.show()
# Evaluate based on npy files, the full validation from model takes a long time and requires large memory
# the code of delta.npy generation is provided in the ExplanationGenerator
# feature generation is included in train_SAFA.py
if __name__=='__main__':
meter_level_localization_from_npy()