-
Notifications
You must be signed in to change notification settings - Fork 151
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
在lcqmc数据集上微调效果下降 #19
Comments
可以用sentence-bert的方式微调 |
請問simbert.py訓練完模型並儲存best_model.weights了 config_path = '/home/rca/research/simbert/root/kg/bert/chinese_simbert_L-12_H-768_A-12/bert_config.json' tokenizer = Tokenizer(dict_path, do_lower_case=True) bert = build_transformer_model( test_sentence = "微信和支付宝哪个好?" def gen_similar_sentences(text, n=10, k=10): token_ids, segment_ids = tokenizer.encode(test_sentence, max_length=maxlen) output_ids = model.predict([np.array([token_ids]), np.array([segment_ids])]) generated_sentence = tokenizer.decode(output_ids) print(f"原句子:{test_sentence}") |
我的方法是直接 from simbert import gen_synonyms,这样模型会加载新的权重 |
在lcqmc数据集上微调simbert,在测试集上spearman指标下降一个点,怎么微调simbert呢?
The text was updated successfully, but these errors were encountered: