-
Notifications
You must be signed in to change notification settings - Fork 101
/
persam.py
205 lines (159 loc) · 7.08 KB
/
persam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import torch
from torch.nn import functional as F
import os
import cv2
from tqdm import tqdm
import argparse
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
from show import *
from per_segment_anything import sam_model_registry, SamPredictor
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='./data')
parser.add_argument('--outdir', type=str, default='persam')
parser.add_argument('--ckpt', type=str, default='sam_vit_h_4b8939.pth')
parser.add_argument('--ref_idx', type=str, default='00')
parser.add_argument('--sam_type', type=str, default='vit_h')
args = parser.parse_args()
return args
def main():
args = get_arguments()
print("Args:", args)
images_path = args.data + '/Images/'
masks_path = args.data + '/Annotations/'
output_path = './outputs/' + args.outdir
if not os.path.exists('./outputs/'):
os.mkdir('./outputs/')
for obj_name in os.listdir(images_path):
if ".DS" not in obj_name:
persam(args, obj_name, images_path, masks_path, output_path)
def persam(args, obj_name, images_path, masks_path, output_path):
print("\n------------> Segment " + obj_name)
# Path preparation
ref_image_path = os.path.join(images_path, obj_name, args.ref_idx + '.jpg')
ref_mask_path = os.path.join(masks_path, obj_name, args.ref_idx + '.png')
test_images_path = os.path.join(images_path, obj_name)
output_path = os.path.join(output_path, obj_name)
os.makedirs(output_path, exist_ok=True)
# Load images and masks
ref_image = cv2.imread(ref_image_path)
ref_image = cv2.cvtColor(ref_image, cv2.COLOR_BGR2RGB)
ref_mask = cv2.imread(ref_mask_path)
ref_mask = cv2.cvtColor(ref_mask, cv2.COLOR_BGR2RGB)
print("======> Load SAM" )
if args.sam_type == 'vit_h':
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).cuda()
elif args.sam_type == 'vit_t':
sam_type, sam_ckpt = 'vit_t', 'weights/mobile_sam.pt'
device = "cuda" if torch.cuda.is_available() else "cpu"
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to(device=device)
sam.eval()
predictor = SamPredictor(sam)
print("======> Obtain Location Prior" )
# Image features encoding
ref_mask = predictor.set_image(ref_image, ref_mask)
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
ref_mask = ref_mask.squeeze()[0]
# Target feature extraction
target_feat = ref_feat[ref_mask > 0]
target_embedding = target_feat.mean(0).unsqueeze(0)
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
target_embedding = target_embedding.unsqueeze(0)
print('======> Start Testing')
for test_idx in tqdm(range(len(os.listdir(test_images_path)))):
# Load test image
test_idx = '%02d' % test_idx
test_image_path = test_images_path + '/' + test_idx + '.jpg'
test_image = cv2.imread(test_image_path)
test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB)
# Image feature encoding
predictor.set_image(test_image)
test_feat = predictor.features.squeeze()
# Cosine similarity
C, h, w = test_feat.shape
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
test_feat = test_feat.reshape(C, h * w)
sim = target_feat @ test_feat
sim = sim.reshape(1, 1, h, w)
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
sim = predictor.model.postprocess_masks(
sim,
input_size=predictor.input_size,
original_size=predictor.original_size).squeeze()
# Positive-negative location prior
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
# Obtain the target guidance for cross-attention layers
sim = (sim - sim.mean()) / torch.std(sim)
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
# First-step prediction
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
multimask_output=False,
attn_sim=attn_sim, # Target-guided Attention
target_embedding=target_embedding # Target-semantic Prompting
)
best_idx = 0
# Cascaded Post-refinement-1
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Cascaded Post-refinement-2
y, x = np.nonzero(masks[best_idx])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
input_box = np.array([x_min, y_min, x_max, y_max])
masks, scores, logits, _ = predictor.predict(
point_coords=topk_xy,
point_labels=topk_label,
box=input_box[None, :],
mask_input=logits[best_idx: best_idx + 1, :, :],
multimask_output=True)
best_idx = np.argmax(scores)
# Save masks
plt.figure(figsize=(10, 10))
plt.imshow(test_image)
show_mask(masks[best_idx], plt.gca())
show_points(topk_xy, topk_label, plt.gca())
plt.title(f"Mask {best_idx}", fontsize=18)
plt.axis('off')
vis_mask_output_path = os.path.join(output_path, f'vis_mask_{test_idx}.jpg')
with open(vis_mask_output_path, 'wb') as outfile:
plt.savefig(outfile, format='jpg')
final_mask = masks[best_idx]
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
mask_colors[final_mask, :] = np.array([[0, 0, 128]])
mask_output_path = os.path.join(output_path, test_idx + '.png')
cv2.imwrite(mask_output_path, mask_colors)
def point_selection(mask_sim, topk=1):
# Top-1 point selection
w, h = mask_sim.shape
topk_xy = mask_sim.flatten(0).topk(topk)[1]
topk_x = (topk_xy // h).unsqueeze(0)
topk_y = (topk_xy - topk_x * h)
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
topk_label = np.array([1] * topk)
topk_xy = topk_xy.cpu().numpy()
# Top-last point selection
last_xy = mask_sim.flatten(0).topk(topk, largest=False)[1]
last_x = (last_xy // h).unsqueeze(0)
last_y = (last_xy - last_x * h)
last_xy = torch.cat((last_y, last_x), dim=0).permute(1, 0)
last_label = np.array([0] * topk)
last_xy = last_xy.cpu().numpy()
return topk_xy, topk_label, last_xy, last_label
if __name__ == "__main__":
main()