nonceHeap实现了一个heap.Interface的数据结构,用来实现了一个堆的数据结构。 在heap.Interface的文档介绍中,默认实现的是最小堆。
如果h是一个数组,只要数组中的数据满足下面的要求。那么就认为h是一个最小堆。
!h.Less(j, i) for 0 <= i < h.Len() and 2*i+1 <= j <= 2*i+2 and j < h.Len()
// 把数组看成是一颗满的二叉树,第一个元素是树根,第二和第三个元素是树根的两个树枝,
// 这样依次推下去 那么如果树根是 i 那么它的两个树枝就是 2*i+2 和 2*i + 2。
// 最小堆的定义是 任意的树根不能比它的两个树枝大。 也就是上面的代码描述的定义。
heap.Interface的定义
我们只需要定义满足下面接口的数据结构,就能够使用heap的一些方法来实现为堆结构。
type Interface interface {
sort.Interface
Push(x interface{}) // add x as element Len() 把x增加到最后
Pop() interface{} // remove and return element Len() - 1. 移除并返回最后的一个元素
}
nonceHeap的代码分析。
// nonceHeap is a heap.Interface implementation over 64bit unsigned integers for
// retrieving sorted transactions from the possibly gapped future queue.
type nonceHeap []uint64
func (h nonceHeap) Len() int { return len(h) }
func (h nonceHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h nonceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *nonceHeap) Push(x interface{}) {
*h = append(*h, x.(uint64))
}
func (h *nonceHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
txSortedMap,存储的是同一个账号下面的所有的交易。
结构
// txSortedMap is a nonce->transaction hash map with a heap based index to allow
// iterating over the contents in a nonce-incrementing way.
// txSortedMap是一个具有基于堆的索引的nonce->交易 的hashmap,
// 允许以nonce递增的方式迭代内容。
type Transactions []*Transaction
type txSortedMap struct {
items map[uint64]*types.Transaction // Hash map storing the transaction data
index *nonceHeap // Heap of nonces of all the stored transactions (non-strict mode)
cache types.Transactions // Cache of the transactions already sorted 用来缓存已经排好序的交易。
}
Put 和 Get, Get用于获取指定nonce的交易, Put用来把交易插入到map中。
// Get retrieves the current transactions associated with the given nonce.
func (m *txSortedMap) Get(nonce uint64) *types.Transaction {
return m.items[nonce]
}
// Put inserts a new transaction into the map, also updating the map's nonce
// index. If a transaction already exists with the same nonce, it's overwritten.
// 把一个新的事务插入到map中,同时更新map的nonce索引。 如果一个事务已经存在,就把它覆盖。 同时任何缓存的数据会被删除。
func (m *txSortedMap) Put(tx *types.Transaction) {
nonce := tx.Nonce()
if m.items[nonce] == nil {
heap.Push(m.index, nonce)
}
m.items[nonce], m.cache = tx, nil
}
Forward用于删除所有nonce小于threshold的交易。 然后返回所有被移除的交易。
// Forward removes all transactions from the map with a nonce lower than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance.
func (m *txSortedMap) Forward(threshold uint64) types.Transactions {
var removed types.Transactions
// Pop off heap items until the threshold is reached
for m.index.Len() > 0 && (*m.index)[0] < threshold {
nonce := heap.Pop(m.index).(uint64)
removed = append(removed, m.items[nonce])
delete(m.items, nonce)
}
// If we had a cached order, shift the front
// cache是排好序的交易。
if m.cache != nil {
m.cache = m.cache[len(removed):]
}
return removed
}
Filter, 删除所有令filter函数调用返回true的交易,并返回那些交易。
// Filter iterates over the list of transactions and removes all of them for which
// the specified function evaluates to true.
func (m *txSortedMap) Filter(filter func(*types.Transaction) bool) types.Transactions {
var removed types.Transactions
// Collect all the transactions to filter out
for nonce, tx := range m.items {
if filter(tx) {
removed = append(removed, tx)
delete(m.items, nonce)
}
}
// If transactions were removed, the heap and cache are ruined
// 如果事务被删除,堆和缓存被毁坏
if len(removed) > 0 {
*m.index = make([]uint64, 0, len(m.items))
for nonce := range m.items {
*m.index = append(*m.index, nonce)
}
// 需要重建堆
heap.Init(m.index)
// 设置cache为nil
m.cache = nil
}
return removed
}
Cap 对items里面的数量有限制,返回超过限制的所有交易。
// Cap places a hard limit on the number of items, returning all transactions
// exceeding that limit.
// Cap 对items里面的数量有限制,返回超过限制的所有交易。
func (m *txSortedMap) Cap(threshold int) types.Transactions {
// Short circuit if the number of items is under the limit
if len(m.items) <= threshold {
return nil
}
// Otherwise gather and drop the highest nonce'd transactions
var drops types.Transactions
sort.Sort(*m.index) //从小到大排序 从尾部删除。
for size := len(m.items); size > threshold; size-- {
drops = append(drops, m.items[(*m.index)[size-1]])
delete(m.items, (*m.index)[size-1])
}
*m.index = (*m.index)[:threshold]
// 重建堆
heap.Init(m.index)
// If we had a cache, shift the back
if m.cache != nil {
m.cache = m.cache[:len(m.cache)-len(drops)]
}
return drops
}
Remove
// Remove deletes a transaction from the maintained map, returning whether the
// transaction was found.
//
func (m *txSortedMap) Remove(nonce uint64) bool {
// Short circuit if no transaction is present
_, ok := m.items[nonce]
if !ok {
return false
}
// Otherwise delete the transaction and fix the heap index
for i := 0; i < m.index.Len(); i++ {
if (*m.index)[i] == nonce {
heap.Remove(m.index, i)
break
}
}
delete(m.items, nonce)
m.cache = nil
return true
}
Ready函数
// Ready retrieves a sequentially increasing list of transactions starting at the
// provided nonce that is ready for processing. The returned transactions will be
// removed from the list.
// Ready 返回一个从指定nonce开始,连续的交易。 返回的交易会被删除。
// Note, all transactions with nonces lower than start will also be returned to
// prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing!
// 注意,请注意,所有具有低于start的nonce的交易也将被返回,以防止进入和无效状态。
// 这不是应该发生的事情,而是自我纠正而不是失败!
func (m *txSortedMap) Ready(start uint64) types.Transactions {
// Short circuit if no transactions are available
if m.index.Len() == 0 || (*m.index)[0] > start {
return nil
}
// Otherwise start accumulating incremental transactions
var ready types.Transactions
// 从最小的开始,一个一个的增加,
for next := (*m.index)[0]; m.index.Len() > 0 && (*m.index)[0] == next; next++ {
ready = append(ready, m.items[next])
delete(m.items, next)
heap.Pop(m.index)
}
m.cache = nil
return ready
}
Flatten,返回一个基于nonce排序的交易列表。并缓存到cache字段里面,以便在没有修改的情况下反复使用。
// Len returns the length of the transaction map.
func (m *txSortedMap) Len() int {
return len(m.items)
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (m *txSortedMap) Flatten() types.Transactions {
// If the sorting was not cached yet, create and cache it
if m.cache == nil {
m.cache = make(types.Transactions, 0, len(m.items))
for _, tx := range m.items {
m.cache = append(m.cache, tx)
}
sort.Sort(types.TxByNonce(m.cache))
}
// Copy the cache to prevent accidental modifications
txs := make(types.Transactions, len(m.cache))
copy(txs, m.cache)
return txs
}
txList 是属于同一个账号的交易列表, 按照nonce排序。可以用来存储连续的可执行的交易。对于非连续的交易,有一些小的不同的行为。
结构
// txList is a "list" of transactions belonging to an account, sorted by account
// nonce. The same type can be used both for storing contiguous transactions for
// the executable/pending queue; and for storing gapped transactions for the non-
// executable/future queue, with minor behavioral changes.
type txList struct {
strict bool // Whether nonces are strictly continuous or not nonces是严格连续的还是非连续的
txs *txSortedMap // Heap indexed sorted hash map of the transactions 基于堆索引的交易的hashmap
costcap *big.Int // Price of the highest costing transaction (reset only if exceeds balance) 所有交易里面,GasPrice * GasLimit最高的值
gascap *big.Int // Gas limit of the highest spending transaction (reset only if exceeds block limit) 所有交易里面, GasPrice最高的值
}
Overlaps 返回给定的交易是否有具有相同nonce的交易存在。
// Overlaps returns whether the transaction specified has the same nonce as one
// already contained within the list.
//
func (l *txList) Overlaps(tx *types.Transaction) bool {
return l.txs.Get(tx.Nonce()) != nil
}
Add 执行这样的操作,如果新的交易比老的交易的GasPrice值要高出一定的比值priceBump,那么会替换老的交易。
// Add tries to insert a new transaction into the list, returning whether the
// transaction was accepted, and if yes, any previous transaction it replaced.
// Add 尝试插入一个新的交易,返回交易是否被接收,如果被接收,那么任意之前的交易会被替换。
// If the new transaction is accepted into the list, the lists' cost and gas
// thresholds are also potentially updated.
// 如果新的交易被接收,那么总的cost和gas限制会被更新。
func (l *txList) Add(tx *types.Transaction, priceBump uint64) (bool, *types.Transaction) {
// If there's an older better transaction, abort
// 如果存在老的交易。 而且新的交易的价格比老的高出一定的数量。那么替换。
old := l.txs.Get(tx.Nonce())
if old != nil {
threshold := new(big.Int).Div(new(big.Int).Mul(old.GasPrice(), big.NewInt(100+int64(priceBump))), big.NewInt(100))
if threshold.Cmp(tx.GasPrice()) >= 0 {
return false, nil
}
}
// Otherwise overwrite the old transaction with the current one
l.txs.Put(tx)
if cost := tx.Cost(); l.costcap.Cmp(cost) < 0 {
l.costcap = cost
}
if gas := tx.Gas(); l.gascap.Cmp(gas) < 0 {
l.gascap = gas
}
return true, old
}
Forward 删除nonce小于某个值的所有交易。
// Forward removes all transactions from the list with a nonce lower than the
// provided threshold. Every removed transaction is returned for any post-removal
// maintenance.
func (l *txList) Forward(threshold uint64) types.Transactions {
return l.txs.Forward(threshold)
}
Filter,
// Filter removes all transactions from the list with a cost or gas limit higher
// than the provided thresholds. Every removed transaction is returned for any
// post-removal maintenance. Strict-mode invalidated transactions are also
// returned.
// Filter 移除所有比提供的cost或者gasLimit的值更高的交易。 被移除的交易会返回以便进一步处理。 在严格模式下,所有无效的交易同样被返回。
//
// This method uses the cached costcap and gascap to quickly decide if there's even
// a point in calculating all the costs or if the balance covers all. If the threshold
// is lower than the costgas cap, the caps will be reset to a new high after removing
// the newly invalidated transactions.
// 这个方法会使用缓存的costcap和gascap以便快速的决定是否需要遍历所有的交易。如果限制小于缓存的costcap和gascap,那么在移除不合法的交易之后会更新costcap和gascap的值。
func (l *txList) Filter(costLimit, gasLimit *big.Int) (types.Transactions, types.Transactions) {
// If all transactions are below the threshold, short circuit
// 如果所有的交易都小于限制,那么直接返回。
if l.costcap.Cmp(costLimit) <= 0 && l.gascap.Cmp(gasLimit) <= 0 {
return nil, nil
}
l.costcap = new(big.Int).Set(costLimit) // Lower the caps to the thresholds
l.gascap = new(big.Int).Set(gasLimit)
// Filter out all the transactions above the account's funds
removed := l.txs.Filter(func(tx *types.Transaction) bool { return tx.Cost().Cmp(costLimit) > 0 || tx.Gas().Cmp(gasLimit) > 0 })
// If the list was strict, filter anything above the lowest nonce
var invalids types.Transactions
if l.strict && len(removed) > 0 {
// 所有的nonce大于 最小的被移除的nonce的交易都被任务是无效的。
// 在严格模式下,这种交易也被移除。
lowest := uint64(math.MaxUint64)
for _, tx := range removed {
if nonce := tx.Nonce(); lowest > nonce {
lowest = nonce
}
}
invalids = l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > lowest })
}
return removed, invalids
}
Cap函数用来返回超过数量的交易。 如果交易的数量超过threshold,那么把之后的交易移除并返回。
// Cap places a hard limit on the number of items, returning all transactions
// exceeding that limit.
func (l *txList) Cap(threshold int) types.Transactions {
return l.txs.Cap(threshold)
}
Remove,删除给定Nonce的交易,如果在严格模式下,还删除所有nonce大于给定Nonce的交易,并返回。
// Remove deletes a transaction from the maintained list, returning whether the
// transaction was found, and also returning any transaction invalidated due to
// the deletion (strict mode only).
func (l *txList) Remove(tx *types.Transaction) (bool, types.Transactions) {
// Remove the transaction from the set
nonce := tx.Nonce()
if removed := l.txs.Remove(nonce); !removed {
return false, nil
}
// In strict mode, filter out non-executable transactions
if l.strict {
return true, l.txs.Filter(func(tx *types.Transaction) bool { return tx.Nonce() > nonce })
}
return true, nil
}
Ready, len, Empty, Flatten 直接调用了txSortedMap的对应方法。
// Ready retrieves a sequentially increasing list of transactions starting at the
// provided nonce that is ready for processing. The returned transactions will be
// removed from the list.
//
// Note, all transactions with nonces lower than start will also be returned to
// prevent getting into and invalid state. This is not something that should ever
// happen but better to be self correcting than failing!
func (l *txList) Ready(start uint64) types.Transactions {
return l.txs.Ready(start)
}
// Len returns the length of the transaction list.
func (l *txList) Len() int {
return l.txs.Len()
}
// Empty returns whether the list of transactions is empty or not.
func (l *txList) Empty() bool {
return l.Len() == 0
}
// Flatten creates a nonce-sorted slice of transactions based on the loosely
// sorted internal representation. The result of the sorting is cached in case
// it's requested again before any modifications are made to the contents.
func (l *txList) Flatten() types.Transactions {
return l.txs.Flatten()
}
priceHeap是一个最小堆, 按照价格的大小来建堆。
// priceHeap is a heap.Interface implementation over transactions for retrieving
// price-sorted transactions to discard when the pool fills up.
type priceHeap []*types.Transaction
func (h priceHeap) Len() int { return len(h) }
func (h priceHeap) Less(i, j int) bool { return h[i].GasPrice().Cmp(h[j].GasPrice()) < 0 }
func (h priceHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *priceHeap) Push(x interface{}) {
*h = append(*h, x.(*types.Transaction))
}
func (h *priceHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
数据结构和构建,txPricedList 是基于价格排序的堆,允许按照价格递增的方式处理交易。
// txPricedList is a price-sorted heap to allow operating on transactions pool
// contents in a price-incrementing way.
type txPricedList struct {
all *map[common.Hash]*types.Transaction // Pointer to the map of all transactions 这是一个指针,指向了所有交易的map
items *priceHeap // Heap of prices of all the stored transactions
stales int // Number of stale price points to (re-heap trigger)
}
// newTxPricedList creates a new price-sorted transaction heap.
func newTxPricedList(all *map[common.Hash]*types.Transaction) *txPricedList {
return &txPricedList{
all: all,
items: new(priceHeap),
}
}
Put
// Put inserts a new transaction into the heap.
func (l *txPricedList) Put(tx *types.Transaction) {
heap.Push(l.items, tx)
}
Removed
// Removed notifies the prices transaction list that an old transaction dropped
// from the pool. The list will just keep a counter of stale objects and update
// the heap if a large enough ratio of transactions go stale.
// Removed 用来通知txPricedList有一个老的交易被删除. txPricedList使用一个计数器来决定何时更新堆信息.
func (l *txPricedList) Removed() {
// Bump the stale counter, but exit if still too low (< 25%)
l.stales++
if l.stales <= len(*l.items)/4 {
return
}
// Seems we've reached a critical number of stale transactions, reheap
reheap := make(priceHeap, 0, len(*l.all))
l.stales, l.items = 0, &reheap
for _, tx := range *l.all {
*l.items = append(*l.items, tx)
}
heap.Init(l.items)
}
Cap 用来找到所有低于给定价格阈值的交易. 把他们从priceList删除并返回.
// Cap finds all the transactions below the given price threshold, drops them
// from the priced list and returs them for further removal from the entire pool.
func (l *txPricedList) Cap(threshold *big.Int, local *accountSet) types.Transactions {
drop := make(types.Transactions, 0, 128) // Remote underpriced transactions to drop
save := make(types.Transactions, 0, 64) // Local underpriced transactions to keep
for len(*l.items) > 0 {
// Discard stale transactions if found during cleanup
tx := heap.Pop(l.items).(*types.Transaction)
if _, ok := (*l.all)[tx.Hash()]; !ok {
// 如果发现一个已经删除的,那么更新states计数器
l.stales--
continue
}
// Stop the discards if we've reached the threshold
if tx.GasPrice().Cmp(threshold) >= 0 {
// 如果价格不小于阈值, 那么退出
save = append(save, tx)
break
}
// Non stale transaction found, discard unless local
if local.containsTx(tx) { //本地的交易不会删除
save = append(save, tx)
} else {
drop = append(drop, tx)
}
}
for _, tx := range save {
heap.Push(l.items, tx)
}
return drop
}
Underpriced, 检查 tx是否比 当前txPricedList里面最便宜的交易还要便宜或者是同样便宜.
// Underpriced checks whether a transaction is cheaper than (or as cheap as) the
// lowest priced transaction currently being tracked.
func (l *txPricedList) Underpriced(tx *types.Transaction, local *accountSet) bool {
// Local transactions cannot be underpriced
if local.containsTx(tx) {
return false
}
// Discard stale price points if found at the heap start
for len(*l.items) > 0 {
head := []*types.Transaction(*l.items)[0]
if _, ok := (*l.all)[head.Hash()]; !ok {
l.stales--
heap.Pop(l.items)
continue
}
break
}
// Check if the transaction is underpriced or not
if len(*l.items) == 0 {
log.Error("Pricing query for empty pool") // This cannot happen, print to catch programming errors
return false
}
cheapest := []*types.Transaction(*l.items)[0]
return cheapest.GasPrice().Cmp(tx.GasPrice()) >= 0
}
Discard,查找一定数量的最便宜的交易,把他们从当前的列表删除并返回.
// Discard finds a number of most underpriced transactions, removes them from the
// priced list and returns them for further removal from the entire pool.
func (l *txPricedList) Discard(count int, local *accountSet) types.Transactions {
drop := make(types.Transactions, 0, count) // Remote underpriced transactions to drop
save := make(types.Transactions, 0, 64) // Local underpriced transactions to keep
for len(*l.items) > 0 && count > 0 {
// Discard stale transactions if found during cleanup
tx := heap.Pop(l.items).(*types.Transaction)
if _, ok := (*l.all)[tx.Hash()]; !ok {
l.stales--
continue
}
// Non stale transaction found, discard unless local
if local.containsTx(tx) {
save = append(save, tx)
} else {
drop = append(drop, tx)
count--
}
}
for _, tx := range save {
heap.Push(l.items, tx)
}
return drop
}
accountSet 就是一个账号的集合和一个处理签名的对象.
// accountSet is simply a set of addresses to check for existence, and a signer
// capable of deriving addresses from transactions.
type accountSet struct {
accounts map[common.Address]struct{}
signer types.Signer
}
// newAccountSet creates a new address set with an associated signer for sender
// derivations.
func newAccountSet(signer types.Signer) *accountSet {
return &accountSet{
accounts: make(map[common.Address]struct{}),
signer: signer,
}
}
// contains checks if a given address is contained within the set.
func (as *accountSet) contains(addr common.Address) bool {
_, exist := as.accounts[addr]
return exist
}
// containsTx checks if the sender of a given tx is within the set. If the sender
// cannot be derived, this method returns false.
// containsTx检查给定tx的发送者是否在集合内。 如果发件人无法被计算出,则此方法返回false。
func (as *accountSet) containsTx(tx *types.Transaction) bool {
if addr, err := types.Sender(as.signer, tx); err == nil {
return as.contains(addr)
}
return false
}
// add inserts a new address into the set to track.
func (as *accountSet) add(addr common.Address) {
as.accounts[addr] = struct{}{}
}
txJournal是交易的一个循环日志,其目的是存储本地创建的事务,以允许未执行的事务在节点重新启动后继续运行。 结构
// txJournal is a rotating log of transactions with the aim of storing locally
// created transactions to allow non-executed ones to survive node restarts.
type txJournal struct {
path string // Filesystem path to store the transactions at 用来存储交易的文件系统路径.
writer io.WriteCloser // Output stream to write new transactions into 用来写入新交易的输出流.
}
newTxJournal,用来创建新的交易日志.
// newTxJournal creates a new transaction journal to
func newTxJournal(path string) *txJournal {
return &txJournal{
path: path,
}
}
load方法从磁盘解析交易,然后调用add回调方法.
// load parses a transaction journal dump from disk, loading its contents into
// the specified pool.
func (journal *txJournal) load(add func(*types.Transaction) error) error {
// Skip the parsing if the journal file doens't exist at all
if _, err := os.Stat(journal.path); os.IsNotExist(err) {
return nil
}
// Open the journal for loading any past transactions
input, err := os.Open(journal.path)
if err != nil {
return err
}
defer input.Close()
// Inject all transactions from the journal into the pool
stream := rlp.NewStream(input, 0)
total, dropped := 0, 0
var failure error
for {
// Parse the next transaction and terminate on error
tx := new(types.Transaction)
if err = stream.Decode(tx); err != nil {
if err != io.EOF {
failure = err
}
break
}
// Import the transaction and bump the appropriate progress counters
total++
if err = add(tx); err != nil {
log.Debug("Failed to add journaled transaction", "err", err)
dropped++
continue
}
}
log.Info("Loaded local transaction journal", "transactions", total, "dropped", dropped)
return failure
}
insert方法,调用rlp.Encode写入writer
// insert adds the specified transaction to the local disk journal.
func (journal *txJournal) insert(tx *types.Transaction) error {
if journal.writer == nil {
return errNoActiveJournal
}
if err := rlp.Encode(journal.writer, tx); err != nil {
return err
}
return nil
}
rotate方法基于当前的交易池重新生成交易,
// rotate regenerates the transaction journal based on the current contents of
// the transaction pool.
func (journal *txJournal) rotate(all map[common.Address]types.Transactions) error {
// Close the current journal (if any is open)
if journal.writer != nil {
if err := journal.writer.Close(); err != nil {
return err
}
journal.writer = nil
}
// Generate a new journal with the contents of the current pool
replacement, err := os.OpenFile(journal.path+".new", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0755)
if err != nil {
return err
}
journaled := 0
for _, txs := range all {
for _, tx := range txs {
if err = rlp.Encode(replacement, tx); err != nil {
replacement.Close()
return err
}
}
journaled += len(txs)
}
replacement.Close()
// Replace the live journal with the newly generated one
if err = os.Rename(journal.path+".new", journal.path); err != nil {
return err
}
sink, err := os.OpenFile(journal.path, os.O_WRONLY|os.O_APPEND, 0755)
if err != nil {
return err
}
journal.writer = sink
log.Info("Regenerated local transaction journal", "transactions", journaled, "accounts", len(all))
return nil
}
close
// close flushes the transaction journal contents to disk and closes the file.
func (journal *txJournal) close() error {
var err error
if journal.writer != nil {
err = journal.writer.Close()
journal.writer = nil
}
return err
}