-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
executable file
·75 lines (59 loc) · 2.65 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch.nn as nn
import json
# Class to package a convolution block, including batch norm
class ConvolutionBlock(nn.Module):
def __init__(self, outputChannels, activation = nn.LeakyReLU(0.1), **kwargs):
super(ConvolutionBlock, self).__init__()
self.block = nn.LazyConv2d(outputChannels, bias = False, **kwargs)
self.batchnorm = nn.LazyBatchNorm2d()
self.activation = activation
def forward(self, inputData):
return self.activation(self.batchnorm(self.block(inputData)))
class LinearBlock(nn.Module):
def __init__(self, output_size, activation):
super(LinearBlock, self).__init__()
self.block = nn.LazyLinear(output_size)
self.activation = nn.LeakyReLU(0.1) if activation == "LeakyReLU" else nn.LeakyReLU(1)
def forward(self, inputData):
return self.activation(self.block(inputData))
class Model(nn.Module):
def __init__(self, classifier_name, featureDetector = None, **kwargs):
super(Model, self).__init__()
with open("config/architecture.json", "r") as FILE:
architectures = json.load(FILE)
self.featureDetector = featureDetector if featureDetector else createNetwork(architectures['feature_detector'])
self.classifier = createNetwork(architectures[classifier_name])
def forward(self, inputData):
return self.classifier(self.featureDetector(inputData))
def createLayer(description):
if description['type'] == "maxpool":
return nn.MaxPool2d(
kernel_size = description['kernel'],
stride = description['stride'],
padding = 0
)
if description['type'] == "avgpool":
return nn.AvgPool2d(
kernel_size = description['kernel'],
stride = description['stride'],
padding = 0
)
if description['type'] == "conv":
return ConvolutionBlock(
description['outputChannels'],
kernel_size = description['kernel'],
stride = description['stride'],
padding = int(description['kernel'] / 2)
)
if description['type'] == "linear":
return LinearBlock(
description['output_size'],
description['activation']
)
if description['type'] == 'dropout':
return nn.Dropout(description['rate'])
if description['type'] == "flatten":
return nn.Flatten()
print(f"Error: Cannot create layer type '{description['type']}'")
def createNetwork(architecture):
return nn.Sequential(*[createLayer(description) for description in architecture])