Geographic information systems use GeoTIFF and other formats to organize and store gridded raster datasets such as satellite imagery and terrain models. Rasterio reads and writes these formats and provides a Python API based on Numpy N-dimensional arrays and GeoJSON.
Here's an example program that extracts the GeoJSON shapes of a raster's valid data footprint.
import rasterio
import rasterio.features
import rasterio.warp
with rasterio.open('example.tif') as dataset:
# Read the dataset's valid data mask as a ndarray.
mask = dataset.dataset_mask()
# Extract feature shapes and values from the array.
for geom, val in rasterio.features.shapes(
mask, transform=dataset.transform):
# Transform shapes from the dataset's own coordinate
# reference system to CRS84 (EPSG:4326).
geom = rasterio.warp.transform_geom(
dataset.crs, 'EPSG:4326', geom, precision=6)
# Print GeoJSON shapes to stdout.
print(geom)
The output of the program:
{'type': 'Polygon', 'coordinates': [[(-77.730817, 25.282335), ...]]}
Rasterio supports Python versions 3.6 or higher.
.. toctree:: :maxdepth: 2 intro installation quickstart cli topics/index Rasterio API Reference <api/index> contributing faq