forked from WZBSocialScienceCenter/tmtoolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
69 lines (56 loc) · 2.21 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
tmtoolkit setuptools based setup module
"""
import os
from codecs import open
from setuptools import setup, find_packages
import tmtoolkit
GITHUB_URL = 'https://github.com/WZBSocialScienceCenter/tmtoolkit'
here = os.path.abspath(os.path.dirname(__file__))
# Get the long description from the README file
with open(os.path.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(
name=tmtoolkit.__title__,
version=tmtoolkit.__version__,
description='Text Mining and Topic Modeling Toolkit',
long_description=long_description,
long_description_content_type='text/markdown',
url=GITHUB_URL,
project_urls={
'Bug Reports': GITHUB_URL + '/issues',
'Source': GITHUB_URL,
},
author=tmtoolkit.__author__,
author_email='[email protected]',
license=tmtoolkit.__license__,
classifiers=[
'Development Status :: 4 - Beta',
'Intended Audience :: Science/Research',
'Intended Audience :: Developers',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
'Programming Language :: Python',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Topic :: Scientific/Engineering :: Information Analysis',
'Topic :: Software Development :: Libraries :: Python Modules',
'Topic :: Utilities',
],
keywords='textmining textanalysis text mining analysis preprocessing topicmodeling topic modeling evaluation',
packages=find_packages(exclude=['tests', 'examples']),
include_package_data=True,
python_requires='>=3.5',
install_requires=['numpy>=1.13.0', 'scipy>=1.0.0', 'pandas>=0.20.0', 'nltk>=3.0.0',
'globre>=0.1.5', 'matplotlib>=2.2.2', 'germalemma>=0.1.1'],
extras_require={
'excel_export': ['openpyxl'],
'wordclouds': ['wordcloud', 'Pillow'],
'topic_modeling_lda': ['lda'],
'topic_modeling_sklearn': ['scikit-learn>=0.18.0'],
'topic_modeling_gensim': ['gensim>=3.4.0'],
'topic_modeling_eval_extra': ['gmpy2'],
}
)