-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrained_Classifier_ANN.py
92 lines (62 loc) · 2.17 KB
/
Trained_Classifier_ANN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import pandas as pd
import cv2
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras import optimizers
from keras.models import model_from_json
from keras.layers import Dropout, Dense
from keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
from keras import callbacks
from sklearn.preprocessing import StandardScaler
tbCallBack = callbacks.TensorBoard(log_dir='./Graph', histogram_freq=0, write_graph=True, write_images=True)
#train
df = pd.read_csv('anglesratiostrain.csv', header = None)
X_train = df.iloc[:,0:94]
y_train = df.iloc[:,-1:]
enc = LabelEncoder()
enc.fit(y_train)
y_train = enc.transform(y_train)
y_train = to_categorical(y_train)
y_train = pd.DataFrame(y_train)
scaler = StandardScaler(with_mean = False).fit(X_train)
X_train = scaler.transform(X_train)
scalery = StandardScaler(with_mean = False).fit(y_train)
y_train = scalery.transform(y_train)
#test
df = pd.read_csv('anglesratiostest.csv', header = None)
X_test = df.iloc[:,0:94]
y_test = df.iloc[:,-1:]
enc.fit(y_test)
y_test = enc.transform(y_test)
y_test = to_categorical(y_test)
y_test = pd.DataFrame(y_test)
X_test = scaler.transform(X_test)
y_test = scalery.transform(y_test)
#predictions
df = pd.read_csv('anglesratiospredictions.csv', header = None)
X_pred = df.iloc[:,0:94]
y_pred = df.iloc[:,-1:]
enc.fit(y_pred)
y_pred = enc.transform(y_pred)
y_pred = to_categorical(y_pred)
y_pred = pd.DataFrame(y_pred)
X_pred = scaler.transform(X_pred)
y_pred = scalery.transform(y_pred)
print "Model Started"
json_file = open('classifier.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
# load weights into new model
model.load_weights("classifier.h5")
print("Loaded model from disk")
# evaluate loaded model on test data
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
loss,score = model.evaluate(X_test, y_test, batch_size=200, verbose=1)
print("test acc: "+ str(score*100))
print("test loss: "+ str(loss))
loss,score = model.evaluate(X_pred, y_pred, batch_size=200, verbose=1)
print("pred acc: "+ str(score*100))
print("pred loss: "+ str(loss))