Skip to content

Latest commit

 

History

History
108 lines (56 loc) · 2.62 KB

GETTING_STARTED.md

File metadata and controls

108 lines (56 loc) · 2.62 KB

Getting Started

Requirements

Please find the installation instructions in INSTALL.md

Code

Pull the code using

git clone https://github.com/abrarmajeedi/rica2_aqa

and navigate into the code directory

cd rica2_aqa

Data

You can download the zipped data from the Google drive link.

Once downloaded, unzip the archive into ./data into the code directory

Make sure the data follows this structure

├── data
│
│ ├── finediving
│ │ ├── Annotations
│ │ │ ├── Annotation files (**.pkl)
│
│ │ ├── FINADiving_MTL_256
│ │ │ ├── Video Frame directories
│
│ ├── mtl_aqa
│ │ ├── frames_long
│ │ │ ├── Video frame directories
│
│ │ ├── info
│ │ │ ├── Annotation files (**.pkl)

Pretrained I3D weights

You can download the pretrained I3D weights from the Google drive link.

Once downloaded, place the file in ./pre_trained/model_rgb.pth

Running the code

Use the following commands to run the code

FineDiving

python -u train.py configs/fine/stoch_fine_diving_text_data_query.yaml

To run the deterministic RICA2

python -u train.py configs/fine/deter_fine_diving_text_data_query.yaml

MTL-AQA

python -u train.py configs/mtl_aqa/stoch_mtl_diving_text_data_query.yaml

To run the deterministic RICA2

python -u train.py configs/mtl_aqa/deter_mtl_diving_text_data_query.yaml

These commands will train the specified models and automatically run the evaluation, generating the evaluation results at the end.

[BONUS] Tuning Experiment Parameters

Our code allows easy change of model and experiment parameters:

Modifying hyperparameters

You can modify different hyperparameters of the models and training by changing values within in the config files in ./configs

Generating text embeddings

RICA2 incorporates the step information in the an action via LLM embedddings extracted from the textual step descriptions. These can be found ./tools.

For FineDiving

python ./tools/finediving/finediving_t5xxl_text_embed_extraction.py

For MTL-AQA

python ./tools/mtl_aqa/mtl_t5xxl_text_embed_extraction.py

You can easily change the models used for extracting embeddings from the step descriptions by following the user-friendly HuggingFace documentation.

Contact

Email: majeedi+at+wisc+dot+edu