-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataScience.tex
612 lines (450 loc) · 26.4 KB
/
DataScience.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
%\documentclass[secnumarabic, graphics, floatfix, nofootinbib,tightenlines,nobibnotes,aps,prl,12pt]{article}
\documentclass[12pt]{article}
\usepackage[english]{babel}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{hyperref}
\hypersetup{
% bookmarks=true, % show bookmarks bar?
% unicode=false, % non-Latin characters in Acrobat’s bookmarks
% pdftoolbar=true, % show Acrobat’s toolbar?
% pdfmenubar=true, % show Acrobat’s menu?
% pdffitwindow=false, % window fit to page when opened
% pdfstartview={FitH}, % fits the width of the page to the window
pdftitle={The Newtonian approximation in Causal Dynamical Triangulations}, % title
pdfauthor={Adam Getchell}, % author
pdfsubject={Causal Dynamical Triangulations}, % subject of the document
% pdfcreator={Creator}, % creator of the document
% pdfproducer={Producer}, % producer of the document
pdfkeywords={cdt quantum gravity}, % list of keywords
% pdfnewwindow=true, % links in new window
colorlinks=true, % false: boxed links; true: colored links, false is default
linkcolor=blue, % color of internal links, red is default
citecolor=blue, % color of links to bibliography, 'green' is default
% filecolor=magenta, % color of file links
urlcolor=blue % color of external links, cyan is default
}
\usepackage{cleveref}
\crefname{equation}{equation}{equations}
\usepackage[toc,page]{appendix}
\title{The Newtonian approximation in Causal Dynamical Triangulations}
\author{\textbf{Adam Getchell}\footnote{\href{mailto:[email protected]}{[email protected]}}\\\textit{Department of Physics, University of California, Davis, CA, 95616}}
\begin{document}
\maketitle
\begin{abstract}
I review how to derive Newton's law from the Weyl strut between two Chazy-Curzon particles. I then apply this approach in Causal Dynamical Triangulations, modifying the algorithm to keep two simplicial complexes with curvature (i.e. mass) a fixed distance within each other (modulo regularized deviations) across all time slices. I then examine the results to determine if CDT produces an equivalent Weyl strut, which can then be used to obtain the Newtonian limit.
\end{abstract}
\section{Introduction}
\textit{(Why is QG important? Why is QG hard? What is the CDT approach to QG? What are CDTs successes? What are CDT's problems? How does this paper solve one of its problems?)}
A major unsolved problem in physics is reconciling the classical approach of general relativity with quantum field theory. In QFT, the fields operate on a fixed background. In GR, the background (spacetime) itself is a dynamical participant.
The usual perturbative approach of QFT fails for a number of reasons: first, gravity is non-renormalizable. Second, the usual methods of converting a non-renormalizable theory to a renormalizable one, either by adding new fields (Electroweak) or adding new terms (Quantum Chromodynamics), fail. This does not altogther rule out these approaches, but folks have been trying to do this for a long time and no one has succeeded yet. \textit{(This is another Carlip quote, rework or quantify)}
The current proposals to quantize gravity include string theory, which adds infinitely many degrees of freedom, and loop quantum gravity, which quantizes Hilbert space of states in a non-standard way and defines the holonomies of connections as finite quantum objects. \textit{(Discuss holonomy better, or take out reference if too complicated?)} A third approach, asymptotic safety, assumes that nonrenormalizable quantum gravity is just the infrared end of a renormalization group flow, which in turn originates from a nonperturbative UV fixed point. By adjusting a finite number of coupling constants, the parameter space of the critical surface around the UV fixed point can be reached. \textit{(Better discussion of RNG flow needed or warranted, given the topic?)}
Causal Dynamical Triangulations (CDT) is a lattice field theory which defines a nonperturbative quantum field theory of gravity as a sum over spacetime geometries. The lattice spacing parameter introduces a UV cutoff, which allows a systematic search for a fixed point via adjustment of the bare coupling constants. But even if asymptotic safety proves to be an invalid assumption, a lattice theory of quantum gravity is an effective quantum gravity theory, obtained by integrating out all degrees of freedom except for the spin-2 field.
CDT \cite{ambjorn_geometry_1996,cdt,ambjorn_nonperturbative_2012} is a promising approach to the problems of quantum gravity. Since the 1930's \cite{rovelli_notes_2000} attempts have been made to unify quantum mechanics with general relativity.
\begin{quote}
This is a hard problem, no one agrees on the answers, and perhaps if we knew why it was hard maybe it wouldn't be hard.
--Steve Carlip
\end{quote}
The underlying difficulties are that observables in general relativity are necessarily non-local, making it difficult to write down a theory that extracts observable results.
Causal Dynamical Triangulations uses the path integral approach, and has had notable successes \cite{kommu_validation_2011}. However, a difficulty is taking and extracting data that has physical meaning. \textit{(Explain why one cannot identify points in a path integral, nor talk about functions of a point. Explain the field correlator in matter-coupled quantum gravity)}
A fundamental question is, does Causal Dynamical Triangulations have physical meaning? Attempts have been made before to relate CDT to the semi-classical limit \cite{ambjorn_semiclassical_2011,ambjorn_semiclassical}, but not everyone is convinced.
This paper attempts to answer this question by directly finding the Newtonian approximation in Causal Dynamical Triangulations.
\section{Newton's Law of Gravitation from General Relativity}
\label{sec:newtons-law}
\textit{What is elementary flatness? What is a conical singularity? What is intrinsic curvature? What is extrinsic curvature? Why does a conical singularity give us Newton's law?}
Starting from the cylindrically symmetric (Weyl) vacuum metric \cite{synge_relativity}
\begin{equation}
ds^{2}=e^{2\lambda}dt^{2}-e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right)-r^{2}e^{-2\lambda}d\phi^{2}
\label{eq:weyl-vacuum-metric}
\end{equation}
where $\lambda$ and $\nu$ are both functions of $r$ and $z$ we find that
\begin{equation}
\partial^{2}_{r}\lambda+\frac{1}{r}\partial_{r}\lambda+\partial^{2}_{z}\lambda=\nabla^2\lambda(r,z)=0
\label{eq:laplace-r-z}
\end{equation}
\begin{equation}
\nu=\int r[\left(\left(\partial_{r}\lambda\right)^{2}-\left(\partial_{z}\lambda\right)^{2}\right)dr+\left(2\partial_{r}\lambda\partial_{z}\lambda\right)dz].
\label{eq:nu}
\end{equation}
The solutions must satisfy \Cref{eq:laplace-r-z,eq:nu}. A particular solution corresponding to two objects (given by Curzon in 1924 \cite{curzon1924} ) is
\begin{equation}
\lambda_0=-\frac{\mu_1}{r_1}-\frac{\mu_2}{r_2}
\label{eq:lambda-0}
\end{equation}
\begin{equation}
\label{eq:nu-0}
\nu_0=-\frac{1}{2}\frac{\mu_{1}^{2}r^2}{r_{1}^{4}}-\frac{1}{2}\frac{\mu_{2}^{2}r^2}{r_{2}^{4}}+\frac{2\mu_1\mu_2}{(z_1-z_2)^2}\left[\frac{r^2+(z-z_1)(z-z_2)}{r_{1}r_{2}}-1\right]
\end{equation}
where $z_1$ and $z_2$ correspond to the positions on the z-axis for the two objects, $\mu_1$ and $\mu_2$ are length parameters, and
\begin{equation}
r_1=\sqrt{r^2+(z-z_1)^2}
\label{eq:r_1}
\end{equation}
\begin{equation}
r_2=\sqrt{r^2+(z-z_2)^2}.
\label{eq:r_2}
\end{equation}
Up to this point we have been assuming spacetime is truly flat. We check this assumption via the condition of elementary flatness: the ratio of the circumference to the radius is equal to $2\pi$.
One way to do this we integrate in the $\hat{\phi}$ direction at
some $r$ and then divide by $r$. This gives
\begin{equation}
\label{eq:phi-hat-length}
C=\int ds =
\int_0^{2\pi}\sqrt{r^2e^{-2\lambda}d\phi^2}={2\pi re^{-\lambda}}.
\end{equation}
Then the condition that $\frac{C}{r}=2\pi$ holds provided that
\begin{equation}
\label{eq:lambda-elem-flat}
\lambda(0,z)\rightarrow 0.
\end{equation}
But \Cref{eq:lambda-0} contradicts \Cref{eq:lambda-elem-flat} and $\frac{C}{r}$ is not at all well-defined as $r\rightarrow 0$. Indeed, Einstein and Rosen \cite{einstein-rosen-1936} first noted that the Weyl metric cannot be a purely vacuum solution, and that there must be a strut on the z-axis.
Now to the salient point: we can use this strut to our advantage by obtaining $T_{zz}$ and thence the Newtonian gravitational interaction via
\begin{equation}
\label{eq:F_z}
F_{z}=\int T_{zz}d\sigma
\end{equation}
as was done by Katz in 1967 \cite{katz1967derivation}. We will use a different approach, however, from either Katz or more recent literature \cite{letelier_superposition_1997}. The details are in Appendix ...
Taking the parallel transport of a vector around the strut, we obtain
TODO
Using the appropriate connections we obtain
TODO
Now we can just read off the value of $G_{zz}$ and thence $T_{zz}$ to get
TODO
\section{Geometry}
\textit{Discuss dynamical triangulations. Discuss Regge calculus. Discuss getting the Einstein tensor in Regge calculus. Discuss getting mass from CDT insertions. Discuss ergodic moves.}
In 1961 Tulio Regge developed a method for doing General Relativity on curved spaces by using simplices, which are higher dimensional versions of triangles. \cite{regge}
The essential idea is to define spacetime as a tesselation of simplicial complexes. In so gluing simplices together within the simplicial complex, an exterior calculus can be defined such that: \cite{david_simplicial_1993}
\begin{equation}
df((p+1))=\sum_{p-subsimplices}f(p-simplex)
\end{equation}
where $d$ is the exterior derivation operator which maps $p$-forms onto $p+1$-forms with the correct orientation. The usual examples for the exterior derivative hold:
\begin{equation}
\begin{aligned}
d^2&=0\\
df(p_1,p_2)&=f(p_2)-f(p_1)\\
df(p_1,p_2,p_3)&=f(p_1,p_2)+f(p_2,p_3)+f(p_3,p_1)\\
\end{aligned}
\end{equation}
This allows the usual machinery of $p$-forms to be defined: $0$-form scalar fields, $1$-form gauge fields, $n$-form antisymmetric tensors, and so on.
However, a simplicial complex does not look like a manifold as the following example shows:
TODO
To fix this, we define a simplicial manifold to be
TODO
Thus, in order to translate the concepts of General Relativity to discrete form, a simplicial manifold is used. As implied by their name, simplicial manifolds combine the properties of simplices -- a generalization of triangulations -- with those of manifolds. We have seen how this allows the useful machinery of differential forms to be carried over to the discrete realm.
The triangulations in Causal Dynamical Triangulations refers to the use of $d$-simplices to construct a spacetime lattice. In general, a $d$-dimensional simplex has $d+1$ points, which are also referred to as $0$-simplices. For a $d$-dimensional simplex there are $\binom{d+1}{k+1}$ $k$-dimensional faces, or sub-simplices.
A simplicial complex \textit{T} has two defining properties \cite{cgal:eb-12b}:
\begin{enumerate}
\item Any face of a simplex in \textit{T} is a simplex in \textit{T}
\item Two simplices in \textit{T} are either disjoint or share a common face
\end{enumerate}
Causal refers to the fact that the triangulations generally span two adjacent timeslices (some simplices -- referred to as spacelike -- do not span timeslices). Using a notation $\{k,n\}$ where $k$ is the number of points on the higher timelike slice and $n$ is the number of points in the lower timelike slice, we summarize simplex geometry in \Cref{table:simplices}. This will be useful in the discussion of ergodic moves in \Cref{ergodic}.
\begin{table}
\centering
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline
Name & Dim & 0-faces & 1-faces & 2-faces & 3-faces & 4-faces & Causal Structure \\
\hline
\hline
Vertex & 0 & 1 & & & & & \\
Edge & 1 & 2 & 1 & & & & \{1,1\} \\
Triangle & 2 & 3 & 3 & 1 & & & \{2,1\} \{1,2\}\\
Tetrahedron & 3 & 4 & 6 & 4 & 1 & & \{3,1\} \{2,2\} \{1,3\} \\
Pentatope & 4 & 5 & 10 & 10 & 5 & 1 & \{4,1\} \{3,2\} \{2,3\} \{1,4\} \\
\hline
\end{tabular}
\caption[Simplex types]{Types and causal structures of simplices}
\label{table:simplices}
\end{table}
The general idea behind Causal Dynamical Triangulations `is to perform a path integral over equivalence classes of metrics:
\begin{equation}
Z[\Lambda,G,\Sigma_k,h]=\sum_{Top(M)}\int_{Riem(M)/Diff(M)}\mathcal{D}[g(M)]e^{-S_g[\Lambda,G,\Sigma]}
\end{equation}
weighted with the Einstein-Hilbert action associated with the Riemannian manifold (M,g):
\begin{equation}
S_g[\Lambda,G,\Sigma]=\Lambda\int_{M}d^n\xi\sqrt{g}R + \textit{boundary terms}
\end{equation}
TODO
To do this, we start from the results of Regge Calculus \cite{regge}
TODO
\subsection{Mass and the Einstein tensor}
Using Barrett \cite{barrett_1986}, we can derive the Einstein tensor in Regge Calculus as follows
TODO
In order to introduce mass, we
TODO
\subsection{Ergodic moves}
\label[subsection]{ergodic}
\textit{What is an ergodic move?}
\subsection{Newtonian gravity in CDT}
\section{Notes on Implementation}
\textit{Discuss Computational Geometry. Discuss the CDT algorithm. Discuss the algorithm for getting mass. Discuss algorithm for getting stress-energy. Discuss other geometrical algorithms.}
These ideas are implemented using CGAL \cite{cgal}, a time-tested library of geometric algorithms in continuous development since 1995.
TODO
\section{Results}
\textit{Discuss any preliminary results.}
\section{Conclusion}
\textit{Discuss further work. Thank colleagues.}
\begin{appendices}
\section{Vacuum solution to the Weyl metric}
The cylindrically symmetric (Weyl) vacuum metric \cite{synge_relativity}:
\begin{equation}
ds^{2}=e^{2\lambda}dt^{2}-e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right)-r^{2}e^{-2\lambda}d\phi^{2}
\end{equation}
\begin{equation}
g_{\mu\nu}=\left(\begin{array}{cccc}
e^{2\lambda} & 0 & 0 & 0\\
0 & -e^{2\left(\nu-\lambda\right)} & 0 & 0\\
0 & 0 & -e^{2\left(\nu-\lambda\right)} & 0\\
0 & 0 & 0 & -r^{2}e^{-2\lambda}
\end{array}\right)\label{eq:general-axisymmetric-static-matrix-metric}
\end{equation}
In this coordinate basis, the definition of the Christoffel connection is: \cite{carroll_spacetime_2003}
\begin{equation}
\Gamma_{\mu\nu}^{\lambda}=\frac{1}{2}g^{\lambda\sigma}\left(\partial_{\mu}g_{\nu\sigma}+\partial_{\nu}g_{\sigma\mu}-\partial_{\sigma}g_{\mu\nu}\right)
\end{equation}
The non-zero Christoffel connections are:
\begin{equation}
\begin{aligned}
\Gamma^{t}_{tr}&=\partial_{r}\lambda\\
\Gamma^{t}_{tz}&=\partial_{z}\lambda\\
\Gamma^{r}_{tt}&=e^{4\lambda-2\nu}\partial_{r}\lambda\\
\Gamma^{r}_{rr}&=\partial_{r}\nu-\partial_{r}\lambda\\
\Gamma^{r}_{rz}&=\partial_{z}\nu-\partial_{z}\lambda\\
\Gamma^{r}_{zz}&=\partial_{r}\lambda-\partial_{r}\nu\\
\Gamma^{r}_{\phi\phi}&=re^{-2\nu}\left(r\partial_{r}\lambda-1\right)\\
\Gamma^{z}_{tt}&=e^{4\lambda-2\nu}\partial_{z}\lambda\\
\Gamma^{z}_{rr}&=\partial_{z}\lambda-\partial_{z}\nu\\
\Gamma^{z}_{rz}&=\partial_{r}\nu-\partial_{r}\lambda\\
\Gamma^{z}_{zz}&=\partial_{z}\nu-\partial_{z}\lambda\\
\Gamma^{z}_{\phi\phi}&=r^{2}e^{-2\nu}\partial_{z}\lambda\\
\Gamma^{\phi}_{r\phi}&=\frac{1}{r}-\partial_{r}\lambda\\
\Gamma^{\phi}_{z\phi}&=-\partial_{z}\lambda\\
\end{aligned}
\label{eq:christoffel-connections}
\end{equation}
The components of the Riemann tensor are given by:
\begin{equation}
R_{\sigma\mu\nu}^{\rho}=\partial_{\mu}\Gamma_{\nu\sigma}^{\rho}-\partial_{\nu}\Gamma_{\mu\sigma}^{\rho}+\Gamma_{\mu\lambda}^{\rho}\Gamma_{\nu\sigma}^{\lambda}-\Gamma_{\nu\lambda}^{\rho}\Gamma_{\mu\sigma}^{\lambda}
\end{equation}
Using the properties of the Riemann tensor:
\begin{equation}
\begin{aligned}
R_{\rho\sigma\mu\nu}&=-R_{\rho\sigma\nu\mu}\\
R_{\rho\sigma\mu\nu}&=-R_{\sigma\rho\mu\nu}\\
R_{\rho\sigma\mu\nu}&=R_{\mu\nu\rho\sigma}\\
R_{\rho[\sigma\mu\nu]}&=0\\
\end{aligned}
\end{equation}
The non-zero components of the Riemann tensor are:
\begin{equation}
\begin{aligned}
R^{t}_{rtr}&=-\partial^{2}_{r}\lambda+\left(\partial_{z}\lambda\right)^{2}-2\left(\partial_{r}\lambda\right)^{2}+\partial_{r}\lambda\partial_{r}\nu-\partial_{z}\lambda\partial_{z}\nu\\
R^{t}_{rtz}&=-\partial_{r}\partial_{z}\lambda-3\partial_{r}\lambda\partial_{z}\lambda+\partial_{r}\lambda\partial_{z}\nu+\partial_{r}\nu\partial_{z}\lambda\\
R^{t}_{ztz}&=-\partial^{2}_{z}\lambda-2\left(\partial_{z}\lambda\right)^{2}+\left(\partial_{r}\lambda\right)^{2}-\partial_{r}\lambda\partial_{r}\nu+\partial_{z}\lambda\partial_{z}\nu\\
R^{t}_{\phi t\phi}&=re^{-2\nu}\left(r\left(\partial_{r}\lambda\right)^{2}-\partial_{r}\lambda+r\left(\partial_{z}\lambda\right)^{2}\right)\\
R^{r}_{zrz}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu\\
R^{z}_{\phi z\phi}&=re^{-2\nu}\left(r\partial^{2}_{z}\lambda-r\partial_{z}\lambda\partial_{z}\nu+r\partial_{r}\lambda\partial_{r}\nu-r\left(\partial_{r}\lambda\right)^{2}+\partial_{r}\lambda-\partial_{r}\nu\right)\\
R^{z}_{\phi\phi r}&=re^{-2\nu}\left(-r\partial_{r}\partial_{z}\lambda+r\partial_{r}\nu\partial_{z}\lambda-r\partial_{r}\lambda\partial_{z}\lambda+r\partial_{r}\lambda\partial_{z}\nu-\partial_{z}\nu\right)\\
R^{\phi}_{r\phi r}&=\partial^{2}_{r}\lambda+\frac{1}{r}\partial_{r}\nu-\partial_{r}\lambda\partial_{r}\nu-\left(\partial_{z}\lambda\right)^{2}+\partial_{z}\lambda\partial_{z}\nu+\frac{1}{r}\partial_{r}\lambda\\
\end{aligned}
\end{equation}
The Ricci tensor is given by:
\begin{equation}
R_{\mu\nu}=R_{\mu\lambda\nu}^{\lambda}
\end{equation}
The non-zero components of the Ricci tensor are:
\begin{equation}
\begin{aligned}
R_{tt}&=\frac{e^{4\lambda-2\nu}}{r}\left(r\partial^{2}_{r}\lambda+r\partial^{2}_{z}\lambda+\partial_{r}\lambda\right)\\
R_{rr}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu-2\left(\partial_{r}\lambda\right)^{2}+\frac{1}{r}\partial_{r}\lambda+\frac{1}{r}\partial_{r}\nu\\
R_{rz}&=\frac{1}{r}\partial_{z}\nu-2\partial_{r}\lambda\partial_{z}\lambda\\
R_{zz}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu-2\left(\partial_{z}\lambda\right)^{2}+\frac{1}{r}\partial_{r}\lambda-\frac{1}{r}\partial_{r}\nu\\
R_{\phi\phi}&=re^{-2\nu}\left(r\partial^{2}_{r}\lambda+r\partial^{2}_{z}\lambda+\partial_{r}\lambda\right)
\end{aligned}
\label{eq:ricci-tensor-components}
\end{equation}
The Ricci scalar is defined as:
\begin{equation}
R=R_{\mu}^{\mu}=g^{\mu\nu}R_{\mu\nu}
\end{equation}
Which is:
\begin{equation}
R=2e^{2\left(\lambda-\nu\right)}\left(\partial^{2}_{r}\nu+\partial^{2}_{z}\nu-\partial^{2}_{r}\lambda-\partial^{2}_{z}\lambda+\left(\partial_{r}\lambda\right)^{2}+\left(\partial_{z}\lambda\right)^{2}-\frac{1}{r}\partial_{r}\lambda\right)\label{eq:R}
\end{equation}
Einstein's equation in a vacuum is:
\begin{equation}
\label{eq:einstein-vacuum-equation}
G_{\mu\nu}=0
\end{equation}
Whence Einstein's equation:
\begin{equation}
G_{\mu\nu}\equiv R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi GT_{\mu\nu}
\label{eq:einstein}
\end{equation}
However, we can take a shortcut by using:
\begin{equation}
R_{\mu\nu}=0
\label{eq:vacuum-solutions}
\end{equation}
Since the trace of a zero-valued matrix is identically zero, and thus \Cref{eq:vacuum-solutions} automatically satisfies \Cref{eq:einstein-vacuum-equation}.
Applying \Cref{eq:vacuum-solutions} to \Cref{eq:ricci-tensor-components} gives the following:
\begin{equation}
\partial^{2}_{r}\lambda+\frac{1}{r}\partial_{r}\lambda+\partial^{2}_{z}\lambda=0\label{eq:laplace}
\end{equation}
\begin{equation}
\partial_{r}\nu=r\left(\partial^{2}_{r}\nu+\partial^{2}_{z}\nu+2\left(\partial_{r}\lambda\right)^{2}\right)\label{eq:R_rr=0}
\end{equation}
\begin{equation}
\partial_{z}\nu=2r\partial_{r}\lambda\partial_{z}\lambda\label{eq:nu_z}
\end{equation}
\begin{equation}
\partial^{2}_{r}\nu+\partial^{2}_{z}\nu+\left(\partial_{r}\lambda\right)^{2}+\left(\partial_{z}\lambda\right)^{2}=0\label{eq:R_phiphi=0}
\end{equation}
\Cref{eq:laplace} is the two-dimensional Laplace equation in cylindrical coordinates. That is:
\begin{equation}
\nabla^2\lambda(r,z)=0
\end{equation}
Plugging \Cref{eq:R_phiphi=0} into \Cref{eq:R_rr=0} gives:
\begin{equation}
\partial_{r}\nu=r\left(\left(\partial_{r}\lambda\right)^{2}-\left(\partial_{z}\lambda\right)^{2}\right)\label{eq:nu_r}
\end{equation}
Using \Cref{eq:nu_z,eq:nu_r} we find solutions for $\nu$ are given by:
\begin{equation}
\nu=\int r[\left(\left(\partial_{r}\lambda\right)^{2}-\left(\partial_{z}\lambda\right)^{2}\right)dr+\left(2\partial_{r}\lambda\partial_{z}\lambda\right)dz]
\end{equation}
The solutions must satisfy \Cref{eq:laplace-r-z,eq:nu}. A particular solution corresponding to two objects (given by Curzon in 1924 \cite{curzon1924} ) is:
\begin{equation}
\lambda_0(r,z)=-\frac{\mu_1}{r_1}-\frac{\mu_2}{r_2}
\end{equation}
\begin{equation}
\nu_0(r,z)=-\frac{1}{2}\frac{\mu_{1}^{2}r^2}{r_{1}^{4}}-\frac{1}{2}\frac{\mu_{2}^{2}r^2}{r_{2}^{4}}+\frac{2\mu_1\mu_2}{(z_1-z_2)^2}\left[\frac{r^2+(z-z_1)(z-z_2)}{r_{1}r_{2}}-1\right]
\end{equation}
Where $z_1$ and $z_2$ correspond to the positions on the z-axis for the two objects, $\mu_1$ and $\mu_2$ are length parameters, and:
\begin{equation}
r_1=\sqrt{r^2+(z-z_1)^2}
\end{equation}
\begin{equation}
r_2=\sqrt{r^2+(z-z_2)^2}
\end{equation}
Just as a final check, plugging \Cref{eq:laplace,eq:R_phiphi=0} into \Cref{eq:R} gives $R=0$, which shows that our solutions are consistent with our assumptions.
By construction, these solutions only apply to empty space, and so must exclude the two objects at $z_1$ and $z_2$. In addition, as noted by Synge \cite{synge_relativity}, the z axis between the two objects must also be excluded due to violation of elementary flatness. We will examine this in the next section.
\section{Curvature from Parallel Transport}
Consider parallel transport of a vector $V$ about the $z$-axis in
the $\hat{\phi}$ direction. The equation for parallel transport is generally given by:
\begin{equation}
\begin{array}{rcl} \frac{D}{d\lambda}=\frac{dx^{\mu}}{d\lambda}\nabla_{\mu}=0 & \mbox{along} & x^{\mu}\left(\lambda\right)
\end{array}
\end{equation}
That is, the directional covariant derivative is equal to zero along
the curve $x^{\mu}$ parameterized by $\lambda$. For a vector this can
be simply written as:
\begin{equation}
\label{eq:x-par-xport}
\nabla_\mu V^{\nu}=\partial_\mu V^\nu+\Gamma^\nu_{\mu\lambda} V^\lambda=0
\end{equation}
Starting with parallel transport along $\hat{e}_{\phi}$, \Cref{eq:x-par-xport} along with the relevant Christoffel symbols $\Gamma^{r}_{\phi\phi}$, $\Gamma^{z}_{\phi\phi}$, $\Gamma^{\phi}_{\phi r}$, and $\Gamma^{\phi}_{\phi z}$ gives:
\begin{equation}
\begin{aligned}
\partial_{\phi}V^{r}+\Gamma^{r}_{\phi\phi}V^{\phi}&=0\\
\partial_{\phi}V^{z}+\Gamma^{z}_{\phi\phi}V^{\phi}&=0\\
\partial_{\phi}V^{\phi}+\Gamma^{\phi}_{\phi r}V^{r}+\Gamma^{\phi}_{\phi z}V^{z}&=0\\
\end{aligned}
\end{equation}
Plugging in the values from \Cref{eq:christoffel-connections}, our equations are:
\begin{equation}
\partial_{\phi}V^{r}+\left(re^{-2\nu}\left(r\partial_{r}\lambda-1\right)\right)V^{\phi}=0\label{eq:V-r-phi}
\end{equation}
\begin{equation}
\label{eq:V_z-V_phi}
\partial_{\phi}V^{z}+\left(r^{2}e^{-2\nu}\partial_{z}\lambda\right)V^{\phi}=0
\end{equation}
\begin{equation}
\partial_{\phi}V^{\phi}+\left(\frac{1}{r}-\partial_{r}\lambda\right)V^{r}-\partial_{z}\lambda V^{z}=0\label{eq:V-phi-r-z}
\end{equation}
Differentiating \Cref{eq:V-phi-r-z} with respect to $\phi$ and plugging it into \Cref{eq:V-r-phi} gives:
\begin{equation}
\partial^{2}_{\phi}V^{\phi}-\partial_z\lambda\partial_{\phi}V^z+r^{2}e^{-2\nu}\left(\partial_r\lambda-\frac{1}{r}\right)^2V^{\phi}=0
\end{equation}
Plugging in the expression for $\partial_{\phi}V^z$ from
\Cref{eq:V_z-V_phi} and letting
\begin{equation}
\label{eq:def-chi}
\chi=re^{-\nu}\sqrt{\left(\partial_z\lambda\right)^2+\left(\frac{1}{r}-\partial_r\lambda\right)^2}
\end{equation}
We have the simple differential equation:
\begin{equation}
\partial^2_\phi V^\phi+\chi^2 V^\phi=0
\end{equation}
For which the solution is:
\begin{equation}
V^{\phi}=A\sin\chi\phi+B\cos\chi\phi
\end{equation}
Therefore, integrating \Cref{eq:V-r-phi} with respect to $\phi$ we get:
\begin{equation}
V^{r}=\frac{r^2e^{-2\nu}(\partial_r\lambda-\frac{1}{r})}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)
\end{equation}
And from \Cref{eq:V_z-V_phi}:
\begin{equation}
V^{z}=\frac{r^2 e^{-2\nu}\partial_z\lambda}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)
\end{equation}
So our general vector is then:
\begin{equation}
\label{eq:V-from-par-transport}
\begin{split}
V=\frac{r^2e^{-2\nu}(\partial_r\lambda-\frac{1}{r})}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)\hat{e}_{r} \\
+\frac{r^2 e^{-2\nu}\partial_z\lambda}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)\hat{e}_{z} \\
+\left(A\sin\chi\phi+B\cos\chi\phi\right)\hat{e}_{\phi}
\end{split}
\end{equation}
Normalizing $V(\phi=0)$:
\begin{equation}
\label{eq:inner-product}
g_{\mu\nu}V^{\mu}V^{\nu}=1
\end{equation}
We obtain the condition that:
\begin{equation}
A^2+B^2=r^{-2}e^{2\lambda}
\end{equation}
For simplicity, we choose $A^2=r^{-2}e^{2\lambda}$ and $B^2=0$.
Now, when we parallel transport $V$ around to $\phi=2\pi$ there will be an angle between $V(\phi=0)$ and $V(\phi=2\pi)$ given by the definition of the scalar product:
\begin{equation}
\cos(\beta)=\frac{g_{\mu\nu}V^{\mu}(0)V^{\nu}(2\pi)}{g_{\mu\nu}V^{\mu}(0)V^{\nu}(0)}
\end{equation}
Since we have normalized our vectors, the denominator is equal to 1, and we get the expression that:
\begin{equation}
\cos\beta=\cos(2\pi\chi)
\end{equation}
Where $\chi$ is given by \Cref{eq:def-chi}. Hence $\beta=2\pi\chi$. We can now use the definition of the deficit angle:
\begin{equation}
\label{eq:deficit-angle}
\Delta=2\pi-\beta=2\pi(1-\chi)
\end{equation}
To get the curvature $\mathcal{R}$ via:
\begin{equation}
\label{eq:curvature}
\mathcal{R}=\lim_{A\rightarrow 0}\frac{\Delta}{A}
\end{equation}
The area $A$ is defined on the reduced metric:
\begin{equation}
ds^2=e^{2(\nu-\lambda)}dr^2+r^2 e^{-2\lambda}d\phi^2
\end{equation}
Via:
\begin{equation}
\label{eq:area}
A=\int\sqrt{|g|}d^n x=\int_{\phi=0}^{\phi=2\pi}\int_{r=0}^{r=R}\sqrt{r^2 e^{2\nu-4\lambda}}drd\phi=2\pi\int_{r=0}^{r=R}re^{\nu-2\lambda}dr
\end{equation}
Plugging \Cref{eq:nu-0,eq:lambda-0} into \Cref{eq:area} gives:
\begin{equation}
\label{eq:area-solved}
A=
\end{equation}
And thus the curvature is:
\begin{equation}
\label{eq:curvature-solved}
\mathcal{R}=
\end{equation}
From the definition of the curvature in \Cref{eq:R} we can obtain the Ricci tensor, and hence the Einstein tensor. Then reading off the value of $G_{zz}$ we obtain the desired $T_{zz}$.
\end{appendices}
\bibliographystyle{ieeetr}
\bibliography{cdt-newtonian-limit-biblio}
\end{document}