-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewtonian-derivation-cdt-v2.tex.bak
534 lines (411 loc) · 21.3 KB
/
newtonian-derivation-cdt-v2.tex.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
\RequirePackage[l2tabu, orthodox]{nag}
\documentclass{article}
\usepackage{mathptmx}
\usepackage[T1]{fontenc}
\usepackage[latin9]{inputenc}
\usepackage{microtype}
\usepackage{calc}
\usepackage{siunitx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{graphicx}
\usepackage{subdepth}
\usepackage{cite}
\usepackage{url}
\usepackage{notoccite}
\usepackage{nag}
\usepackage[letterpaper]{geometry}
\usepackage{hyperref}
\hypersetup{
% bookmarks=true, % show bookmarks bar?
% unicode=false, % non-Latin characters in Acrobat’s bookmarks
% pdftoolbar=true, % show Acrobat’s toolbar?
% pdfmenubar=true, % show Acrobat’s menu?
% pdffitwindow=false, % window fit to page when opened
% pdfstartview={FitH}, % fits the width of the page to the window
pdftitle={The Newtonian approximation in Causal Dynamical Triangulations}, % title
pdfauthor={Adam Getchell}, % author
pdfsubject={Causal Dynamical Triangulations}, % subject of the document
% pdfcreator={Creator}, % creator of the document
% pdfproducer={Producer}, % producer of the document
pdfkeywords={cdt quantum gravity}, % list of keywords
% pdfnewwindow=true, % links in new window
colorlinks=true, % false: boxed links; true: colored links, false is default
linkcolor=blue, % color of internal links, red is default
citecolor=red, % color of links to bibliography, 'green' is default
% filecolor=magenta, % color of file links
% urlcolor=violet % color of external links, cyan is default
}
\usepackage{cleveref}
\crefname{equation}{equation}{equations}
\title{The Newtonian approximation in Causal Dynamical Triangulations}
\author{\textbf{Adam Getchell}\footnote{\href{mailto:[email protected]}{[email protected]}}\\\textit{Department of Physics, University of California, Davis, CA, 95616}}
\date{\today}
\begin{document}
\maketitle
\tableofcontents
\section{Newton's Law of Gravitation from General Relativity}
This treatment follows that of Katz \cite{katz1967derivation}.
\subsection{Vacuum solution to the Weyl metric}
Starting from the cylindrically symmetric (Weyl) vacuum metric \cite{synge_relativity}:
\begin{equation}
ds^{2}=e^{2\lambda}dt^{2}-e^{2\left(\nu-\lambda\right)}\left(dr^{2}+dz^{2}\right)-r^{2}e^{-2\lambda}d\phi^{2}
\label{eq:weyl-vacuum-metric}
\end{equation}
\begin{equation}
g_{\mu\nu}=\left(\begin{array}{cccc}
e^{2\lambda} & 0 & 0 & 0\\
0 & -e^{2\left(\nu-\lambda\right)} & 0 & 0\\
0 & 0 & -e^{2\left(\nu-\lambda\right)} & 0\\
0 & 0 & 0 & -\frac{r^{2}}{e^{2\lambda}}
\end{array}\right)\label{eq:general-axisymmetric-static-matrix-metric}
\end{equation}
In this coordinate basis, the definition of the Christoffel connection is: \cite{carroll2003spacetime}
\begin{equation}
\Gamma_{\mu\nu}^{\lambda}=\frac{1}{2}g^{\lambda\sigma}\left(\partial_{\mu}g_{\nu\sigma}+\partial_{\nu}g_{\sigma\mu}-\partial_{\sigma}g_{\mu\nu}\right)
\end{equation}
The non-zero Christoffel connections are:
\begin{equation}
\begin{aligned}
\Gamma^{t}_{tr}&=\partial_{r}\lambda\\
\Gamma^{t}_{tz}&=\partial_{z}\lambda\\
\Gamma^{r}_{tt}&=e^{4\lambda-2\nu}\partial_{r}\lambda\\
\Gamma^{r}_{rr}&=\partial_{r}\nu-\partial_{r}\lambda\\
\Gamma^{r}_{rz}&=\partial_{z}\nu-\partial_{z}\lambda\\
\Gamma^{r}_{zz}&=\partial_{r}\lambda-\partial_{r}\nu\\
\Gamma^{r}_{\phi\phi}&=re^{-2\nu}\left(r\partial_{r}\lambda-1\right)\\
\Gamma^{z}_{tt}&=e^{4\lambda-2\nu}\partial_{z}\lambda\\
\Gamma^{z}_{rr}&=\partial_{z}\lambda-\partial_{z}\nu\\
\Gamma^{z}_{rz}&=\partial_{r}\nu-\partial_{r}\lambda\\
\Gamma^{z}_{zz}&=\partial_{z}\nu-\partial_{z}\lambda\\
\Gamma^{z}_{\phi\phi}&=r^{2}e^{-2\nu}\partial_{z}\lambda\\
\Gamma^{\phi}_{r\phi}&=\frac{1}{r}-\partial_{r}\lambda\\
\Gamma^{\phi}_{z\phi}&=-\partial_{z}\lambda\\
\end{aligned}
\label{eq:christoffel-connections}
\end{equation}
The components of the Riemann tensor are given by:
\begin{equation}
R_{\sigma\mu\nu}^{\rho}=\partial_{\mu}\Gamma_{\nu\sigma}^{\rho}-\partial_{\nu}\Gamma_{\mu\sigma}^{\rho}+\Gamma_{\mu\lambda}^{\rho}\Gamma_{\nu\sigma}^{\lambda}-\Gamma_{\nu\lambda}^{\rho}\Gamma_{\mu\sigma}^{\lambda}
\end{equation}
Using the properties of the Riemann tensor:
\begin{equation}
\begin{aligned}
R_{\rho\sigma\mu\nu}&=-R_{\rho\sigma\nu\mu}\\
R_{\rho\sigma\mu\nu}&=-R_{\sigma\rho\mu\nu}\\
R_{\rho\sigma\mu\nu}&=R_{\mu\nu\rho\sigma}\\
R_{\rho[\sigma\mu\nu]}&=0\\
\end{aligned}
\end{equation}
The non-zero components of the Riemann tensor are:
\begin{equation}
\begin{aligned}
R^{t}_{rtr}&=-\partial^{2}_{r}\lambda+\left(\partial_{z}\lambda\right)^{2}-2\left(\partial_{r}\lambda\right)^{2}+\partial_{r}\lambda\partial_{r}\nu-\partial_{z}\lambda\partial_{z}\nu\\
R^{t}_{rtz}&=-\partial_{r}\partial_{z}\lambda-3\partial_{r}\lambda\partial_{z}\lambda+\partial_{r}\lambda\partial_{z}\nu+\partial_{r}\nu\partial_{z}\lambda\\
R^{t}_{ztz}&=-\partial^{2}_{z}\lambda-2\left(\partial_{z}\lambda\right)^{2}+\left(\partial_{r}\lambda\right)^{2}-\partial_{r}\lambda\partial_{r}\nu+\partial_{z}\lambda\partial_{z}\nu\\
R^{t}_{\phi t\phi}&=re^{-2\nu}\left(r\left(\partial_{r}\lambda\right)^{2}-\partial_{r}\lambda+r\left(\partial_{z}\lambda\right)^{2}\right)\\
R^{r}_{zrz}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu\\
R^{z}_{\phi z\phi}&=re^{-2\nu}\left(r\partial^{2}_{z}\lambda-r\partial_{z}\lambda\partial_{z}\nu+r\partial_{r}\lambda\partial_{r}\nu-r\left(\partial_{r}\lambda\right)^{2}+\partial_{r}\lambda-\partial_{r}\nu\right)\\
R^{z}_{\phi\phi r}&=re^{-2\nu}\left(-r\partial_{r}\partial_{z}\lambda+r\partial_{r}\nu\partial_{z}\lambda-r\partial_{r}\lambda\partial_{z}\lambda+r\partial_{r}\lambda\partial_{z}\nu-\partial_{z}\nu\right)\\
R^{\phi}_{r\phi r}&=\partial^{2}_{r}\lambda+\frac{1}{r}\partial_{r}\nu-\partial_{r}\lambda\partial_{r}\nu-\left(\partial_{z}\lambda\right)^{2}+\partial_{z}\lambda\partial_{z}\nu+\frac{1}{r}\partial_{r}\lambda\\
\end{aligned}
\end{equation}
The Ricci tensor is given by:
\begin{equation}
R_{\mu\nu}=R_{\mu\lambda\nu}^{\lambda}
\end{equation}
The non-zero components of the Ricci tensor are:
\begin{equation}
\begin{aligned}
R_{tt}&=\frac{e^{4\lambda-2\nu}}{r}\left(r\partial^{2}_{r}\lambda+r\partial^{2}_{z}\lambda+\partial_{r}\lambda\right)\\
R_{rr}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu-2\left(\partial_{r}\lambda\right)^{2}+\frac{1}{r}\partial_{r}\lambda+\frac{1}{r}\partial_{r}\nu\\
R_{rz}&=\frac{1}{r}\partial_{z}\nu-2\partial_{r}\lambda\partial_{z}\lambda\\
R_{zz}&=\partial^{2}_{r}\lambda-\partial^{2}_{r}\nu+\partial^{2}_{z}\lambda-\partial^{2}_{z}\nu-2\left(\partial_{z}\lambda\right)^{2}+\frac{1}{r}\partial_{r}\lambda-\frac{1}{r}\partial_{r}\nu\\
R_{\phi\phi}&=re^{-2\nu}\left(r\partial^{2}_{r}\lambda+r\partial^{2}_{z}\lambda+\partial_{r}\lambda\right)
\end{aligned}
\label{eq:ricci-tensor-components}
\end{equation}
The Ricci scalar is defined as:
\begin{equation}
R=R_{\mu}^{\mu}=g^{\mu\nu}R_{\mu\nu}
\end{equation}
Which is:
\begin{equation}
R=2e^{2\left(\lambda-\nu\right)}\left(\partial^{2}_{r}\nu+\partial^{2}_{z}\nu-\partial^{2}_{r}\lambda-\partial^{2}_{z}\lambda+\left(\partial_{r}\lambda\right)^{2}+\left(\partial_{z}\lambda\right)^{2}-\frac{1}{r}\partial_{r}\lambda\right)\label{eq:R}
\end{equation}
Einstein's equation in a vacuum is:
\begin{equation}
\label{eq:einstein-vacuum-equation}
G_{\mu\nu}=0
\end{equation}
Whence Einstein's equation:
\begin{equation}
G_{\mu\nu}\equiv R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi GT_{\mu\nu}
\label{eq:einstein}
\end{equation}
However, we can take a shortcut by using:
\begin{equation}
R_{\mu\nu}=0
\label{eq:vacuum-solutions}
\end{equation}
Since the trace of a zero-valued matrix is identically zero, and thus \Cref{eq:vacuum-solutions} automatically satisfies \Cref{eq:einstein-vacuum-equation}.
Applying \Cref{eq:vacuum-solutions} to \Cref{eq:ricci-tensor-components} gives the following:
\begin{equation}
\partial^{2}_{r}\lambda+\frac{1}{r}\partial_{r}\lambda+\partial^{2}_{z}\lambda=0\label{eq:laplace}
\end{equation}
\begin{equation}
\partial_{r}\nu=r\left(\partial^{2}_{r}\nu+\partial^{2}_{z}\nu+2\left(\partial_{r}\lambda\right)^{2}\right)\label{eq:R_rr=0}
\end{equation}
\begin{equation}
\partial_{z}\nu=2r\partial_{r}\lambda\partial_{z}\lambda\label{eq:nu_z}
\end{equation}
\begin{equation}
\partial^{2}_{r}\nu+\partial^{2}_{z}\nu+\left(\partial_{r}\lambda\right)^{2}+\left(\partial_{z}\lambda\right)^{2}=0\label{eq:R_phiphi=0}
\end{equation}
\Cref{eq:laplace} is the two-dimensional Laplace equation in cylindrical coordinates. That is:
\begin{equation}
\nabla^2\lambda(r,z)=0
\label{eq:laplace-r-z}
\end{equation}
Plugging \Cref{eq:R_phiphi=0} into \Cref{eq:R_rr=0} gives:
\begin{equation}
\partial_{r}\nu=r\left(\left(\partial_{r}\lambda\right)^{2}-\left(\partial_{z}\lambda\right)^{2}\right)\label{eq:nu_r}
\end{equation}
Using \Cref{eq:nu_z,eq:nu_r} we find solutions for $\nu$ are given by:
\begin{equation}
\nu=\int r[\left(\left(\partial_{r}\lambda\right)^{2}-\left(\partial_{z}\lambda\right)^{2}\right)dr+\left(2\partial_{r}\lambda\partial_{z}\lambda\right)dz]\label{eq:nu}
\end{equation}
The solutions must satisfy \Cref{eq:laplace-r-z,eq:nu}. A particular solution corresponding to two objects (given by Curzon in 1924 \cite{curzon1924} ) is:
\begin{equation}
\lambda_0=-\frac{\mu_1}{r_1}-\frac{\mu_2}{r_2}
\label{eq:lambda-0}
\end{equation}
\begin{equation}
\label{eq:nu-0}
\nu_0=\frac{1}{2}\frac{\mu_{1}^{2}r^2}{r_{1}^{4}}-\frac{1}{2}\frac{\mu_{2}^{2}r^2}{r_{2}^{4}}+\frac{2\mu_1\mu_2}{(z-z_2)^2}\left[\frac{r^2+(z-z_1)(z-z_2)}{r_{1}r_{2}}-1\right]
\end{equation}
Where $z_1$ and $z_2$ correspond to the positions on the z-axis for the two objects, $\mu_1$ and $\mu_2$ are length parameters, and:
\begin{equation}
r_1=\sqrt{r^2+(z-z_1)^2}
\label{eq:r_1}
\end{equation}
\begin{equation}
r_2=\sqrt{r^2+(z-z_2)^2}
\label{eq:r_2}
\end{equation}
Just as a final check, plugging \Cref{eq:laplace,eq:R_phiphi=0} into \Cref{eq:R} gives $R=0$, which shows that our solutions are consistent with our assumptions.
By construction, these solutions only apply to empty space, and so must exclude the two objects at $z_1$ and $z_2$. In addition, as noted by Synge \cite{synge_relativity}, the z axis between the two objects must also be excluded due to violation of elementary flatness. We will examine this in the next section.
\subsection{Elementary Flatness}
In order to be certain that our spacetime is truly flat, we impose the condition of elementary flatness: the ratio of the circumference to the radius is equal to $2\pi$. This gives restrictions on solutions for $\lambda\left(r,z\right)$ and $\nu\left(r,z\right)$.
To do this we will first integrate in the $\hat{\phi}$ direction at
some $r$ and then divide by $r$. This gives:
\begin{equation}
\label{eq:phi-hat-length}
L=\int ds =
\int_0^{2\pi}\sqrt{-r^2e^{-2\lambda}d\phi^2}=\pm\frac{2\pi r}{e^{\lambda}}
\end{equation}
Then the condition that $\frac{L}{r}=2\pi$ holds provided that
$e^{-\lambda}=1$. That is,
\begin{equation}
\label{eq:lambda-elem-flat}
\lambda(0,z)\rightarrow 0
\end{equation}
But since $\frac{L}{r}$ is not well-defined as $r\rightarrow 0$, this is a sign
that we need to look more carefully at the $z$-axis.
Consider parallel transport of a vector $V$ about the $z$-axis in
the $\hat{\phi}$ direction, demanding that the values
for $\phi=0$ and $\phi=2\pi$ are equal.
The equation for parallel transport is generally given by:
\begin{equation}
\begin{array}{rcl} \frac{D}{d\lambda}=\frac{dx^{\mu}}{d\lambda}\nabla_{\mu}=0 & \mbox{along} & x^{\mu}\left(\lambda\right)
\end{array}
\end{equation}
That is, the directional covariant derivative is equal to zero along
the curve $x^{\mu}$ parameterized by $\lambda$. For a vector this can
be simply written as:
\begin{equation}
\label{eq:x-par-xport}
\nabla_\mu V^{\nu}=\partial_\mu V^\nu+\Gamma^\nu_{\mu\lambda} V^\lambda=0
\end{equation}
Starting with parallel transport along $\hat{e}_{\phi}$, \Cref{eq:x-par-xport} along with the relevant Christoffel symbols $\Gamma^{r}_{\phi\phi}$, $\Gamma^{z}_{\phi\phi}$, $\Gamma^{\phi}_{\phi r}$, and $\Gamma^{\phi}_{\phi z}$ gives:
\begin{equation}
\begin{aligned}
\partial_{\phi}V^{r}+\Gamma^{r}_{\phi\phi}V^{\phi}&=0\\
\partial_{\phi}V^{z}+\Gamma^{z}_{\phi\phi}V^{\phi}&=0\\
\partial_{\phi}V^{\phi}+\Gamma^{\phi}_{\phi r}V^{r}+\Gamma^{\phi}_{\phi z}V^{z}&=0\\
\end{aligned}
\end{equation}
Plugging in the values from \Cref{eq:christoffel-connections}, our equations are:
\begin{equation}
\partial_{\phi}V^{r}+\left(re^{-2\nu}\left(r\partial_{r}\lambda-1\right)\right)V^{\phi}=0\label{eq:V-r-phi}
\end{equation}
\begin{equation}
\label{eq:V_z-V_phi}
\partial_{\phi}V^{z}+\left(r^{2}e^{-2\nu}\partial_{z}\lambda\right)V^{\phi}=0
\end{equation}
\begin{equation}
\partial_{\phi}V^{\phi}+\left(\frac{1}{r}-\partial_{r}\lambda\right)V^{r}-\partial_{z}\lambda V^{z}=0\label{eq:V-phi-r-z}
\end{equation}
Differentiating \Cref{eq:V-phi-r-z} with respect to $\phi$ and plugging it into \Cref{eq:V-r-phi} gives:
\begin{equation}
\partial^{2}_{\phi}V^{\phi}-\partial_z\lambda\partial_{\phi}V^z+r^{2}e^{-2\nu}\left(\partial_r\lambda-\frac{1}{r}\right)^2V^{\phi}=0
\end{equation}
Plugging in the expression for $\partial_{\phi}V^z$ from
\Cref{eq:V_z-V_phi} and letting
\begin{equation}
\label{eq:def-chi}
\chi=re^{-\nu}\sqrt{\left(\partial_z\lambda\right)^2+\left(\partial_r\lambda-\frac{1}{r}\right)^2}
\end{equation}
We have the simple differential equation:
\begin{equation}
\partial^2_\phi V^\phi+\chi^2 V^\phi=0
\end{equation}
For which the solution is:
\begin{equation}
V^{\phi}=A\sin\chi\phi+B\cos\chi\phi
\end{equation}
Therefore, integrating \Cref{eq:V-r-phi} with respect to $\phi$ we get:
\begin{equation}
V^{r}=\frac{r^2e^{-2\nu}(\partial_r\lambda-\frac{1}{r})}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)
\end{equation}
And from \Cref{eq:V_z-V_phi}:
\begin{equation}
V^{z}=\frac{r^2 e^{-2\nu}\partial_z\lambda}{\chi}\left(A\cos\chi\phi-B\sin\chi\phi\right)
\end{equation}
At $\phi=0$ we have $V^\phi=1$ and $V^r=r_0$ (leaving aside for the
moment $V^z$, since we are free to parallel transport about $\phi$
anywhere along the z-axis). Then the condition that $V^\phi=1$ leads to
$B=1$. Likewise, setting $V^r=r_0$ leads to:
\begin{equation}
\label{eq:conditions}
\frac{A e^{-\nu}(\partial_r\lambda-\frac{1}{r_0})}{\sqrt{\left(\partial_z\lambda\right)^2+\left(\partial_r\lambda-\frac{1}{r}\right)^2}}=1
\end{equation}
We set $A=1$ for convenience. Then from \Cref{eq:conditions} taking
the limit as $r_0\rightarrow 0$ we find:
\begin{equation}
\label{eq:limit-r->0}
\lim_{r_0\rightarrow 0} \frac{e^{-\nu(r_0,z)}(\partial_r\lambda-\frac{1}{r_0})}{\sqrt{\left(\partial_z\lambda\right)^2+\left(\partial_r\lambda-\frac{1}{r}\right)^2}}=e^{-\nu(r_0,z)}=1
\end{equation}
As $r_0$ is completely arbitrary we can characterize this as:
\begin{equation}
\label{eq:nu-elem-flat}
\lim_{r\rightarrow 0}\nu(0,z)=0
\end{equation}
The general expression for the vector is then:
\begin{equation}
\label{eq:v-from-par-transport}
V=\left(\frac{r e^{-\nu}}{\sqrt{\left(\partial_z\lambda\right)^2+\left(\partial_r\lambda-\frac{1}{r}\right)^2}}\right)\left(\cos\chi\phi-\sin\chi\phi\right)\left(\left(\partial_r\lambda-\frac{1}{r}\right)\hat{e}_{r}+\partial_z\lambda\hat{e}_{z}\right)+\left(\sin(\chi\phi)+\cos(\chi\phi)\right)\hat{e}_{\phi}
\end{equation}
Then,
\begin{equation}
\label{eq:lim-0}
\lim_{{r_0}\rightarrow 0} V\left(\phi=0\right)=\hat{e_{\phi}}
\end{equation}
Thus, the requirement that the vector is identical at $\phi=2\pi$
after being transported around the circle starting at $\phi=0$ as
$r_0\rightarrow 0$ is, from \Cref{eq:v-from-par-transport}:
\begin{equation}
\label{eq:lim-2-pi}
\sin 2\pi\chi + \cos 2\pi\chi = 1
\end{equation}
In general, this has a number of solutions: all the integers
$\chi=n=1,2,\ldots$ and $n=\frac{1}{4}, \frac{9}{4}, \frac{17}{4}$. The equivalent to \Cref{eq:lim-0,eq:lim-2-pi} for
arbitrary $r_0$ from \Cref{eq:v-from-par-transport} are much more
complex.
What this tells us is that we do not, in general, have elementary flatness around the z-axis. We must therefore exclude it from our solution.
\subsection{Matter solution to the Weyl metric}
\label{subsec:matter-solution}
In principle, we have solutions for axially symmetric static vacuum spacetimes, subject to the conditions of \Cref{eq:lambda-elem-flat,eq:nu-elem-flat}. These solutions, however, exclude the general masses defined by \Cref{eq:lambda-0,eq:nu-0}, as well as the $z=0$ axis (the Weyl strut) between them. We now wish to consider these objects.
The most general cylindrically symmetric static metric may be expressed as:
\begin{equation}
ds^{2}=e^{2\lambda}dt^{2}-e^{2\left(\nu-\sigma\right)}\left(dr^{2}+dz^{2}\right)-r^{2}e^{-2\lambda}d\phi^{2}
\label{eq:weyl-metric}
\end{equation}
Where $\lambda$, $\nu$, and $\sigma$ are functions of $r$ and $z$. Comparing this to the solutions of the empty-space metric \Cref{eq:weyl-vacuum-metric}, and allowing for deviations from these values due to the strut, we make the identifications:
\begin{equation}
\label{eq:lambda-matter}
\lambda=\lambda_0 + f(r,z)
\end{equation}
\begin{equation}
\label{eq:sigma-matter}
\sigma=\lambda_0 + g(r,z)
\end{equation}
\begin{equation}
\label{eq:nu-matter}
\nu=\nu_0 + h(r,z)
\end{equation}
In empty space outside the strut the metric of \Cref{eq:weyl-metric} reduces to that of \Cref{eq:weyl-vacuum-metric}, which implies:
\begin{equation}
\label{eq:f=g}
f(r,z)=g(r,z)
\end{equation}
Evaluating \Cref{eq:nu-0} for $r\rightarrow 0$ (n.b. you must take the one negative and one positive root of the two square root terms to get a non-zero answer) and taking into account the condition of \Cref{eq:nu-elem-flat} we obtain:
\begin{equation}
\label{eq:nu_r=0}
\nu_0 (0,z) = \left\{ \begin{array}{cl}\frac{-4\mu_{1}\mu_{2}}{\left(z_{1}-z_{2}\right)^{2}} & \mbox{for}\quad z_{1}<z<z_{2} \\ 0 & \mbox{otherwise}\end{array}\right.
\end{equation}
From far away, our configuration should have spherical symmetry (i.e. the masses and strut become pointlike). This implies:
\begin{equation}
\label{eq:h-limit}
\lim_{r\rightarrow \infty} h(r,z)\rightarrow 0
\end{equation}
This reasoning will be addressed in the next section.
Combining \Cref{eq:nu-matter} with \Cref{eq:nu_r=0} and the condition of \Cref{eq:nu-elem-flat} yields:
\begin{equation}
\label{eq:h_r=0}
h_0 (0,z) = \left\{ \begin{array}{cl}\frac{4\mu_{1}\mu_{2}}{\left(z_{1}-z_{2}\right)^{2}} & \mbox{for}\quad z_{1}<z<z_{2} \\ 0 & \mbox{otherwise}\end{array}\right.
\end{equation}
To get the force on the strut, we can integrate the z-component of the stress-energy tensor over the area:
\begin{equation}
\label{eq:F_z}
F_{z}=\int T_{zz}d\sigma
\end{equation}
We can get this by processing the metric of \Cref{eq:weyl-metric} through Einstein's equation (\ref{eq:einstein}) resulting in:
\begin{equation}
\label{eq:G_zz}
G_{zz}=-\left(\partial_{r}\lambda\right)^{2}+\left(\partial_{z}\lambda\right)^{2}+\frac{1}{r}\partial_{r}\nu -\frac{1}{r}\partial_{r}\sigma +\frac{1}{r}\partial_{r}\lambda
\end{equation}
Taking a first order approximation to \Cref{eq:G_zz} eliminates the first two squared terms. Applying \Cref{eq:lambda-matter,eq:sigma-matter,eq:nu-matter,eq:f=g} reduces to:
\begin{equation}
\label{eq:G_zz_reduced}
G_{zz}=-\frac{1}{r}\left(\partial_{r}\left(\nu_0+h(r,z)\right)\right)
\end{equation}
Now, recalling \Cref{eq:h-limit} $h(r,z)$ can be taken as being defined at $r=0$. Recalling \Cref{eq:nu-elem-flat} cancels out the $\nu_0$ term, and we are left with:
\begin{equation}
\label{eq:T_zz}
T_{zz}=\frac{1}{8\pi G}G_{zz}=-\frac{1}{8\pi Gr}\partial_{r}h_0(0,z)
\end{equation}
The integration measure for \Cref{eq:F_z} $d\sigma=rdrd\phi$.
Substituting:
\begin{equation}
F=\int rd\phi\int dr T_{zz}=\frac{1}{8\pi Gr}2\pi r\int dr\partial_{r}h_0(0,z)=\frac{1}{4G}\frac{-4\mu_1\mu_2}{\left(z_1-z_2\right)^2}
\end{equation}
Recall that \Cref{eq:lambda-0,eq:nu-0} as solutions to \Cref{eq:einstein-vacuum-equation} contain the length parameters $\mu_1$ and $\mu_2$ in order to make them dimensionless overall. Dimensional analysis (recall we are working in units of $c=1$) shows that $\mu_1$ can be taken as $Gm_{1}$ and $\mu_2=Gm_2$.
Thus, the first order approximation is:
\begin{equation}
F=-\frac{Gm_{1}m_{2}}{\left(z_{1}-z_{2}\right)^{2}}
\end{equation}
Where the negative sign indicates that gravity is attractive \cite{carroll2003spacetime}, and the squared derivative terms we excluded from \Cref{eq:G_zz} are corrections to Newton's law.
Therefore, integrating the stress-energy of the Weyl strut between two stationary masses gives Newton's law (plus higher order corrections).
\subsection{The Schwarszchild solution in cylindrical coordinates}
We have a loose end in \Cref{subsec:matter-solution}. To address if we are justified in applying \Cref{eq:h-limit}, we should check to see if our solution reduces to the Schwarszchild solution for $r\rightarrow\infty$.
\subsection{Extrinsic Curvature}
\section{Application to Causal Dynamical Triangulations}
Causal Dynamical Triangulations uses a path integral over all possible
configurations between boundary conditions. The path integral is given
by:
\begin{equation}
\label{eq:path-integral}
Z=\int \mathcal{D}[g]e^{iS_ {EH}}
\end{equation}
Where:
\begin{equation}
\label{eq:einstein-hilbert-action}
S_{EH}=\frac{1}{16\pi G}\int_{M}d^4 x\sqrt{-g}\left(R-2\Lambda\right)
\end{equation}
Given \eqref{eq:path-integral} and \cite{kommu2011}
\subsection{Regge Calculus}
\bibliographystyle{ieeetr}
\bibliography{newtonian-derivation-cdt-v2}
\end{document}
% LocalWords: xport