-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_test_vs_emulated_plot.py
220 lines (179 loc) · 6.58 KB
/
make_test_vs_emulated_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from pathlib import Path
import numpy as np
from eccentric_configuration import (
GPR_KWARGS,
TEST_METRIC_FILEPATH,
TRAINING_METRIC_FILEPATH,
USE_POLAR,
)
from emulator import recast_eccentricity_dimensions_in_polar
from make_eccentric_emulators import (
build_eccentric_emulator,
get_eccentric_coordinates_as_dict,
)
from matplotlib import pyplot as plt
from plotting_functions import set_rotation_xaxis
from user_filepaths import LOCAL_REPOSITORY_DIRECTORY
from xarray import load_dataset
def unpack_dict_into_array(dict: dict):
return np.asarray(list(dict.values())).T
def format_coordinates_for_emulator(coordinates):
return np.vstack([coordinate for coordinate in coordinates.values()]).T
def predict_metrics_from_emulator(emulator, input_coordinates):
predicted_test_metric, predicted_test_metric_uncertainty = (
emulator.regressor.predict(
format_coordinates_for_emulator(input_coordinates), return_std=True
)
)
return dict(
metric=predicted_test_metric,
metric_uncertainty=predicted_test_metric_uncertainty,
)
def calculate_residuals(predicted_value, directly_modeled_value, predicted_uncertainty):
return (predicted_value - directly_modeled_value) / predicted_uncertainty
def calculate_normalized_polar_RMS_distances(training_coordinates, test_coordinates):
polar_training_coordinates = recast_eccentricity_dimensions_in_polar(
training_coordinates
)
polar_test_coordinates = recast_eccentricity_dimensions_in_polar(test_coordinates)
edges_of_training_domain = unpack_dict_into_array(
{
dimension_name: np.array([np.min(dimension), np.max(dimension)])
for dimension_name, dimension in polar_training_coordinates.items()
}
)
normalized_training_coordinates = unpack_dict_into_array(
polar_training_coordinates
) / np.ptp(edges_of_training_domain, axis=0)
normalized_test_coordinates = unpack_dict_into_array(
polar_test_coordinates
) / np.ptp(edges_of_training_domain, axis=0)
return np.sqrt(
np.sum(
(
normalized_training_coordinates[:, np.newaxis, :]
- normalized_test_coordinates
)
** 2,
axis=(0, 2),
)
/ len(normalized_test_coordinates)
)
def plot_test_habitabilities_versus_emulator_predictions(
predicted_habitabilities,
test_coordinates,
test_habitabilities,
plot_output_directory: Path = LOCAL_REPOSITORY_DIRECTORY,
):
fig, ax = plt.subplots(figsize=(8, 4))
ax.errorbar(
2 ** test_coordinates["rotation_period"],
predicted_habitabilities["metric"],
predicted_habitabilities["metric_uncertainty"],
linestyle="none",
fmt="o",
mfc="white",
c="#388F52",
label="Value predicted at test location",
)
ax.scatter(
2 ** test_coordinates["rotation_period"],
test_habitabilities,
c="#388F52",
label="Value of test model",
)
ax.set_xscale("log", base=2)
set_rotation_xaxis(
ax,
rotation_period_limits=[
np.min(2 ** test_coordinates["rotation_period"]),
np.max(2 ** test_coordinates["rotation_period"]),
],
)
plt.legend(loc="lower left", fontsize=13)
ax.set_xlabel(r"Rotation Period (days)")
ax.set_ylabel("Habitability")
fig.tight_layout()
plt.savefig(
plot_output_directory
/ "habitability_test-vs-training_rotation_white-kernel.pdf"
)
return fig, ax
def plot_residuals_versus_RMS_distances(
training_coordinates,
test_coordinates,
predicted_habitabilities,
test_habitabilities,
plot_output_directory: Path = LOCAL_REPOSITORY_DIRECTORY,
):
fig = plt.figure(figsize=(6, 6))
RMS_ax = fig.add_subplot(111)
normalized_polar_RMS_distances = calculate_normalized_polar_RMS_distances(
training_coordinates, test_coordinates
)
residuals = calculate_residuals(
predicted_habitabilities["metric"],
test_habitabilities,
predicted_habitabilities["metric_uncertainty"],
)
print(
f"There are {np.sum(np.abs(residuals.values)>1)} points more than 1 sigma away from their predictions, ",
f"and {np.sum(np.abs(residuals.values)>2)} points more than 2 sigma away.",
)
print(f"{residuals=}")
RMS_scatter = RMS_ax.scatter(
normalized_polar_RMS_distances,
residuals,
c=test_coordinates["rotation_period"],
cmap=plt.cm.plasma,
s=64,
)
RMS_ax.axhspan(-1, 1, color="#444444", alpha=0.33, zorder=0)
# RMS_ax.set_ylim(-(ymax := RMS_ax.get_ylim()[1]), ymax)
RMS_ax.set_xlabel(r"$d_\mathrm{RMS}$")
RMS_ax.set_ylabel(
r"$\left(H_\mathrm{pred} - H_\mathrm{GCM}\right) / \sigma_\mathrm{pred}$"
)
colorbar_ax = RMS_ax.inset_axes([1.05, 0, 0.05, 1], transform=RMS_ax.transAxes)
colorbar = fig.colorbar(RMS_scatter, cax=colorbar_ax)
colorbar_ax.set_yticks(np.arange(9))
colorbar.ax.set_yticklabels(2 ** np.arange(9))
colorbar.ax.set_ylabel("Rotation Period (days)")
plt.savefig(
plot_output_directory / "residuals_versus_RMS_distance.pdf", bbox_inches="tight"
)
return fig, (RMS_ax, colorbar_ax)
def run_plotting_routines(
habitability_variable_name: str = "habitability_land",
plot_output_directory: Path = LOCAL_REPOSITORY_DIRECTORY,
):
training_metrics = load_dataset(TRAINING_METRIC_FILEPATH)
test_metrics = load_dataset(TEST_METRIC_FILEPATH)
training_habitability_emulator = build_eccentric_emulator(
training_metrics, habitability_variable_name, use_polar=USE_POLAR, **GPR_KWARGS
)
training_coordinates = get_eccentric_coordinates_as_dict(training_metrics)
test_coordinates = get_eccentric_coordinates_as_dict(test_metrics)
predicted_test_habitabilities = predict_metrics_from_emulator(
training_habitability_emulator, test_coordinates
)
test_habitabilities = test_metrics.get(habitability_variable_name)
fig_1, ax_1 = plot_test_habitabilities_versus_emulator_predictions(
predicted_test_habitabilities,
test_coordinates,
test_habitabilities,
plot_output_directory,
)
fig_2, axes_2 = plot_residuals_versus_RMS_distances(
training_coordinates,
test_coordinates,
predicted_test_habitabilities,
test_habitabilities,
plot_output_directory,
)
return {
"test_vs_training_plot": (fig_1, ax_1),
"residuals_vs_RMS_plot": (fig_2, axes_2),
}
if __name__ == "__main__":
run_plotting_routines()