-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmerge.py
72 lines (58 loc) · 2.37 KB
/
merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import sys, os
import cv2
import torch
import argparse
import timeit
import random
import collections
import pandas as pd
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.backends import cudnn
from torch.utils import data
from tqdm import tqdm
from models import get_model
from loaders import get_loader, get_data_path
from misc.utils import convert_state_dict, AverageMeter
import glob
def merge(args):
# Setup Dataloader
data_loader = get_loader(args.dataset)
data_path = get_data_path(args.dataset)
loader = data_loader(data_path, split=args.split, is_transform=True, no_gt=args.no_gt, seed=args.seed)
n_classes = loader.n_classes
avg_y_prob = np.zeros((loader.__len__(), n_classes), dtype=np.float32)
fold_list = []
for prob_file_name in glob.glob('*.npy'):
prob = np.load(prob_file_name)
avg_y_prob = avg_y_prob + prob
fold_list.append(prob_file_name)
avg_y_prob = avg_y_prob / len(fold_list)
avgprob_file_name = 'prob_{}_avg.npy'.format(len(fold_list))
np.save(avgprob_file_name, avg_y_prob)
# Create submission
csv_file_name = 'submission.csv'
sub = pd.read_csv(os.path.join(data_path, 'sample_submission.csv'), index_col=0)
sub[loader.class_names] = avg_y_prob
sub.to_csv(csv_file_name)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--dataset', nargs='?', type=str, default='freesound',
help='Dataset to use')
parser.add_argument('--img_rows', nargs='?', type=int, default=128,
help='Height of the input image')
parser.add_argument('--img_cols', nargs='?', type=int, default=197,
help='Width of the input image')
parser.add_argument('--split', nargs='?', type=str, default='test',
help='Split of dataset to test on')
parser.add_argument('--no_gt', dest='no_gt', action='store_true',
help='Disable verification | True by default')
parser.add_argument('--gt', dest='no_gt', action='store_false',
help='Enable verification | True by default')
parser.set_defaults(no_gt=True)
parser.add_argument('--seed', nargs='?', type=int, default=1234,
help='Random seed')
args = parser.parse_args()
print(args)
merge(args)