-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
394 lines (330 loc) · 19.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import sys, os
import cv2
import torch
import argparse
import timeit
import random
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
from torch.utils import data
from tqdm import tqdm
from models import get_model
from loaders import get_loader, get_data_path
from misc.spec_augment import SpecAugment
from misc.losses import *
from misc.lovasz_losses import *
from misc.metrics import *
from misc.scheduler import GradualWarmupScheduler
from misc.utils import convert_state_dict, poly_lr_scheduler, AverageMeter
from torchaudio_contrib.layers import Melspectrogram, Pcen
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
def group_weight(module):
group_decay = []
group_no_decay = []
for name, m in module.named_modules():
if isinstance(m, nn.Linear):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.modules.conv._ConvNd):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.modules.batchnorm._BatchNorm) or isinstance(m, nn.modules.normalization.GroupNorm):
if m.weight is not None:
group_no_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
else: # for PCEN
if hasattr(m, 'log_gain') and m.log_gain is not None:
group_no_decay.append(m.log_gain)
if hasattr(m, 'log_bias') and m.log_bias is not None:
group_no_decay.append(m.log_bias)
if hasattr(m, 'log_power') and m.log_power is not None:
group_no_decay.append(m.log_power)
if hasattr(m, 'log_b') and m.log_b is not None:
group_no_decay.append(m.log_b)
assert len(list(module.parameters())) == len(group_decay) + len(group_no_decay)
groups = [dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0)]
return groups
def train(args):
if not os.path.exists('checkpoints'):
os.mkdir('checkpoints')
# Setup Augmentations
data_aug = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomCrop(size=(args.img_rows, args.img_cols)),
])
# Setup Dataloader
data_loader = get_loader(args.dataset)
data_path = get_data_path(args.dataset)
t_loader = data_loader(data_path, is_transform=True, split=args.split, fold_num=args.fold_num, num_folds=args.num_folds, seed=args.seed, augmentations=data_aug, sampling_rate=args.sampling_rate, mode='npy')
v_loader = data_loader(data_path, is_transform=True, split=args.split.replace('train', 'val'), fold_num=args.fold_num, num_folds=args.num_folds, seed=args.seed, sampling_rate=args.sampling_rate, mode='npy')
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
n_classes = t_loader.n_classes
trainloader = data.DataLoader(t_loader, batch_size=args.batch_size, num_workers=4, pin_memory=True, shuffle=True, drop_last=True)
valloader = data.DataLoader(v_loader, batch_size=1, num_workers=4, pin_memory=True)
# Setup Model
model = get_model(args.arch, n_classes, use_cbam=args.use_cbam, in_channels=1, dropout_rate=args.dropout_rate)
model.cuda()
"""
mel_spec_layer = Melspectrogram(num_bands=t_loader.n_mels,
sample_rate=t_loader.sampling_rate,
min_freq=t_loader.fmin,
max_freq=t_loader.fmax,
fft_len=t_loader.n_fft,
hop_len=t_loader.hop_length,
power=1.,)
mel_spec_layer.cuda()
#"""
#"""
# https://www.kaggle.com/c/freesound-audio-tagging-2019/discussion/91859#529792
pcen_layer = Pcen(sr=t_loader.sampling_rate,
hop_length=t_loader.hop_length,
num_bands=t_loader.n_mels,
gain=0.5,
bias=0.001,
power=0.2,
time_constant=0.4,
eps=1e-9,
trainable=args.pcen_trainable,)
pcen_layer.cuda()
#"""
# Check if model has custom optimizer / loss
if hasattr(model, 'optimizer'):
optimizer = model.optimizer
else:
warmup_iter = int(args.n_iter*5./100.)
milestones = [int(args.n_iter*30./100.) - warmup_iter, int(args.n_iter*60./100.) - warmup_iter, int(args.n_iter*90./100.) - warmup_iter] # [30, 60, 90]
gamma = 0.1
if args.pcen_trainable:
optimizer = torch.optim.SGD(group_weight(model) + group_weight(pcen_layer), lr=args.l_rate, momentum=args.momentum, weight_decay=args.weight_decay)
else:
optimizer = torch.optim.SGD(group_weight(model), lr=args.l_rate, momentum=args.momentum, weight_decay=args.weight_decay)
if args.num_cycles > 0:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.n_iter//args.num_cycles, eta_min=args.l_rate*0.01)
else:
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=milestones, gamma=gamma)
scheduler_warmup = GradualWarmupScheduler(optimizer, total_epoch=warmup_iter, min_lr_mul=0.1, after_scheduler=scheduler)
start_iter = 0
if args.resume is not None:
if os.path.isfile(args.resume):
print("Loading model and optimizer from checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, encoding="latin1")
model_dict = model.state_dict()
if checkpoint.get('model_state', None) is not None:
model_dict.update(convert_state_dict(checkpoint['model_state'], load_classifier=args.load_classifier))
else:
model_dict.update(convert_state_dict(checkpoint, load_classifier=args.load_classifier))
model.load_state_dict(model_dict)
if args.pcen_trainable:
pcen_layer_dict = pcen_layer.state_dict()
if checkpoint.get('pcen_state', None) is not None:
pcen_layer_dict.update(convert_state_dict(checkpoint['pcen_state'], load_classifier=args.load_classifier))
pcen_layer.load_state_dict(pcen_layer_dict)
if checkpoint.get('lwlrap', None) is not None:
start_iter = checkpoint['iter']
print("Loaded checkpoint '{}' (iter {}, lwlrap {:.5f})"
.format(args.resume, checkpoint['iter'], checkpoint['lwlrap']))
elif checkpoint.get('iter', None) is not None:
start_iter = checkpoint['iter']
print("Loaded checkpoint '{}' (iter {})"
.format(args.resume, checkpoint['iter']))
if checkpoint.get('optimizer_state', None) is not None:
optimizer.load_state_dict(checkpoint['optimizer_state'])
del model_dict
del checkpoint
torch.cuda.empty_cache()
else:
print("No checkpoint found at '{}'".format(args.resume))
start_iter = args.start_iter if args.start_iter >= 0 else start_iter
trainloader_iter = iter(trainloader)
optimizer.zero_grad()
loss_sum = 0.0
spec_augment = SpecAugment(time_warp_rate=0.1, freq_mask_rate=0.2, time_mask_rate=0.2, num_masks=2) if args.use_spec_aug else None
best_lwlrap = 0.0
start_train_time = timeit.default_timer()
for i in range(start_iter, args.n_iter):
model.train()
##mel_spec_layer.train()
pcen_layer.train()
if args.num_cycles == 0:
scheduler_warmup.step(i)
else:
scheduler_warmup.step(i // args.num_cycles)
try:
images, labels, _ = next(trainloader_iter)
except:
trainloader_iter = iter(trainloader)
images, labels, _ = next(trainloader_iter)
images = images.cuda()
labels = labels.cuda()
##images = mel_spec_layer(images)
images = pcen_layer(images)
if args.use_mix_up:
beta_ab = 0.4
mix_up_alpha = np.random.beta(size=labels.size(0), a=beta_ab, b=beta_ab)
mix_up_alpha = np.maximum(mix_up_alpha, 1. - mix_up_alpha)
mix_up_alpha = torch.from_numpy(mix_up_alpha).float().cuda()
rand_indices = np.arange(labels.size(0))
np.random.shuffle(rand_indices)
rand_indices = torch.from_numpy(rand_indices).long().cuda()
images2 = torch.index_select(images, dim=0, index=rand_indices)
labels2 = torch.index_select(labels, dim=0, index=rand_indices)
images = images * mix_up_alpha.unsqueeze(1).unsqueeze(2).unsqueeze(3) + images2 * (1. - mix_up_alpha.unsqueeze(1).unsqueeze(2).unsqueeze(3))
labels = labels * mix_up_alpha.unsqueeze(1) + labels2 * (1. - mix_up_alpha.unsqueeze(1))
if args.use_spec_aug:
images = spec_augment(images, augs=['freq_mask', 'time_mask'])
outputs = model(images)
focal_loss = sigmoid_focal_loss_with_logits(outputs, labels, gamma=args.gamma_fl)
lovasz_loss = lovasz_hinge(outputs, labels)
loss = focal_loss + lovasz_loss
loss = loss / float(args.iter_size)
loss.backward()
loss_sum = loss_sum + loss.item()
if (i+1) % args.print_train_freq == 0:
print("Iter [%7d/%7d] Loss: %7.4f" % (i+1, args.n_iter, loss_sum))
if (i+1) % args.iter_size == 0:
optimizer.step()
optimizer.zero_grad()
loss_sum = 0.0
if args.eval_freq > 0 and (i+1) % (args.eval_freq // args.save_freq) == 0:
state = {'iter': i+1,
'model_state': model.state_dict(),}
#'optimizer_state': optimizer.state_dict(),}
if args.pcen_trainable:
state['pcen_state'] = pcen_layer.state_dict()
torch.save(state, "checkpoints/{}_{}_{}_{}x{}_{}_{}-{}_model.pth".format(args.arch, args.dataset, i+1, args.img_rows, args.img_cols, args.sampling_rate, args.fold_num, args.num_folds))
if args.eval_freq > 0 and (i+1) % args.eval_freq == 0:
y_true = np.zeros((v_loader.__len__(), n_classes), dtype=np.int32)
y_prob = np.zeros((v_loader.__len__(), n_classes), dtype=np.float32)
mean_loss_val = AverageMeter()
model.eval()
##mel_spec_layer.eval()
pcen_layer.eval()
with torch.no_grad():
for i_val, (images_val, labels_val, _) in tqdm(enumerate(valloader)):
images_val = images_val.cuda()
labels_val = labels_val.cuda()
##images_val = mel_spec_layer(images_val)
images_val = pcen_layer(images_val)
if images_val.size(-1) > args.img_cols: # split into overlapped chunks
stride = (args.img_cols // args.img_cols_div) if (images_val.size(-1) - args.img_cols) > (args.img_cols // args.img_cols_div) else (images_val.size(-1) - args.img_cols)
images_val = torch.cat([images_val[:, :, :, w:w+args.img_cols] for w in range(0, images_val.size(-1)-args.img_cols+1, stride)], dim=0)
outputs_val = model(images_val)
prob_val = F.sigmoid(outputs_val)
outputs_val = outputs_val.mean(0, keepdim=True)
prob_val = prob_val.mean(0, keepdim=True)
focal_loss_val = sigmoid_focal_loss_with_logits(outputs_val, labels_val, gamma=args.gamma_fl)
lovasz_loss_val = lovasz_hinge(outputs_val, labels_val)
loss_val = focal_loss_val + lovasz_loss_val
mean_loss_val.update(loss_val, n=labels_val.size(0))
y_true[i_val:i_val+labels_val.size(0), :] = labels_val.long().cpu().numpy()
y_prob[i_val:i_val+labels_val.size(0), :] = prob_val.cpu().numpy()
per_class_lwlrap, weight_per_class = calculate_per_class_lwlrap(y_true, y_prob)
lwlrap_val = np.sum(per_class_lwlrap * weight_per_class)
print('lwlrap: {:.5f}'.format(lwlrap_val))
print('Mean val loss: {:.4f}'.format(mean_loss_val.avg))
state['lwlrap'] = lwlrap_val
mean_loss_val.reset()
if (i+1) == args.n_iter:
print('per_class_lwlrap: {:.5f} ~ {:.5f}'.format(per_class_lwlrap.min(), per_class_lwlrap.max()))
for c in range(n_classes):
print('{:50s}: {:.5f} ({:.5f})'.format(v_loader.class_names[c], per_class_lwlrap[c], weight_per_class[c]))
torch.save(state, "checkpoints/{}_{}_{}_{}x{}_{}_{}-{}_model.pth".format(args.arch, args.dataset, i+1, args.img_rows, args.img_cols, args.sampling_rate, args.fold_num, args.num_folds))
if best_lwlrap <= lwlrap_val:
best_lwlrap = lwlrap_val
torch.save(state, "checkpoints/{}_{}_{}_{}x{}_{}_{}-{}_model.pth".format(args.arch, args.dataset, 'best', args.img_rows, args.img_cols, args.sampling_rate, args.fold_num, args.num_folds))
print('-- PCEN --\n gain = {:.5f}/{:.5f}\n bias = {:.5f}/{:.5f}\n power = {:.5f}/{:.5f}\n b = {:.5f}/{:.5f}'.format(
pcen_layer.log_gain.exp().min().item(), pcen_layer.log_gain.exp().max().item(),
pcen_layer.log_bias.exp().min().item(), pcen_layer.log_bias.exp().max().item(),
pcen_layer.log_power.exp().min().item(), pcen_layer.log_power.exp().max().item(),
pcen_layer.log_b.exp().min().item(), pcen_layer.log_b.exp().max().item()))
elapsed_train_time = timeit.default_timer() - start_train_time
print('Training time (iter {0:5d}): {1:10.5f} seconds'.format(i+1, elapsed_train_time))
start_train_time = timeit.default_timer()
print('best_lwlrap: {:.5f}'.format(best_lwlrap))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--arch', nargs='?', type=str, default='resnet18',
help='Architecture to use [\'resnet, MobileNetV3, etc\']')
parser.add_argument('--dataset', nargs='?', type=str, default='freesound',
help='Dataset to use')
parser.add_argument('--img_rows', nargs='?', type=int, default=128,
help='Height of the input image')
parser.add_argument('--img_cols', nargs='?', type=int, default=197,
help='Width of the input image')
parser.add_argument('--split', nargs='?', type=str, default='train',
help='Split of dataset to train on')
parser.add_argument('--n_iter', nargs='?', type=int, default=40000,
help='# of the iters')
parser.add_argument('--batch_size', nargs='?', type=int, default=128,
help='Batch Size')
parser.add_argument('--l_rate', nargs='?', type=float, default=1e-1,
help='Learning Rate')
parser.add_argument('--momentum', nargs='?', type=float, default=0.9,
help='Momentum')
parser.add_argument('--weight_decay', nargs='?', type=float, default=1e-4,
help='Weight Decay')
parser.add_argument('--iter_size', nargs='?', type=int, default=1,
help='Accumulated batch gradient size')
parser.add_argument('--resume', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--load_classifier', dest='load_classifier', action='store_true',
help='Enable to load classifier weights | True by default')
parser.add_argument('--no-load_classifier', dest='load_classifier', action='store_false',
help='Disable to load classifier weights | True by default')
parser.set_defaults(load_classifier=True)
parser.add_argument('--use_cbam', dest='use_cbam', action='store_true',
help='Enable to use CBAM | False by default')
parser.add_argument('--no-use_cbam', dest='use_cbam', action='store_false',
help='Disable to use CBAM | False by default')
parser.set_defaults(use_cbam=False)
parser.add_argument('--use_mix_up', dest='use_mix_up', action='store_true',
help='Enable to use mix-up | False by default')
parser.add_argument('--no-use_mix_up', dest='use_mix_up', action='store_false',
help='Disable to use mix-up | False by default')
parser.set_defaults(use_mix_up=False)
parser.add_argument('--use_spec_aug', dest='use_spec_aug', action='store_true',
help='Enable to use SpecAugment | False by default')
parser.add_argument('--no-use_spec_aug', dest='use_spec_aug', action='store_false',
help='Disable to use SpecAugment | False by default')
parser.set_defaults(use_spec_aug=False)
parser.add_argument('--pcen_trainable', dest='pcen_trainable', action='store_true',
help='Enable to make PCEN trainable | False by default')
parser.add_argument('--no-pcen_trainable', dest='pcen_trainable', action='store_false',
help='Disable to make PCEN trainable | False by default')
parser.set_defaults(pcen_trainable=False)
parser.add_argument('--seed', nargs='?', type=int, default=1234,
help='Random seed')
parser.add_argument('--num_cycles', nargs='?', type=int, default=0,
help='Cosine Annealing Cyclic LR')
parser.add_argument('--fold_num', nargs='?', type=int, default=0,
help='Fold number in each class for training')
parser.add_argument('--num_folds', nargs='?', type=int, default=5,
help='Number of folds for training')
parser.add_argument('--print_train_freq', nargs='?', type=int, default=100,
help='Frequency (iterations) of training logs display')
parser.add_argument('--eval_freq', nargs='?', type=int, default=2000,
help='Frequency (iters) of evaluation of current model')
parser.add_argument('--save_freq', nargs='?', type=int, default=1,
help='Frequency (iters) of saving current model (divided by eval_freq)')
parser.add_argument('--dropout_rate', nargs='?', type=float, default=0.5,
help='Dropout value')
parser.add_argument('--gamma_fl', nargs='?', type=float, default=0.0,
help='Focal Loss - gamma')
parser.add_argument('--sampling_rate', nargs='?', type=int, default=44100,
help='Audio sampling rate')
parser.add_argument('--img_cols_div', nargs='?', type=int, default=2,
help='Overlapped chunk size for TTA')
parser.add_argument('--start_iter', nargs='?', type=int, default=-1,
help='Starting iteration number (-1 to ignore)')
args = parser.parse_args()
print(args)
train(args)