This quick instructions document contains 3 steps:
- installing software
- preparing data
- running the script
This is useful if you need to ask someone to reproduce problems with Megatron-Deepspeed
Please follow this exact order.
-
Create a new conda env if need be or activate an existing environment.
-
Install
pytorch
. Choose the desired version install instructions here, but for conda it'd be:
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
- Install system-wide
cuda
if you don't have it already. NVIDIA instructions. Of course ideally use the premade packages for your distro. Use the same major version as pytorch's cuda build. To check use:
python -c 'import torch; print(f"pt={torch.__version__}, cuda={torch.version.cuda}")'
The minor versions don't actually have to match, but then you will need to hack apex
installer to ignore minor version changes, see below.
- Install
apex
git clone https://github.com/NVIDIA/apex
cd apex
pip install --global-option="--cpp_ext" --global-option="--cuda_ext" --no-cache -v --disable-pip-version-check . 2>&1 | tee build.log
cd -
If the pytorch and system-wide cuda minor versions mismatch, it's not a problem, you just need to hack apex
's build to bypass the check by applying this patch first and then build it.
diff --git a/setup.py b/setup.py
index d76e998..f224dae 100644
--- a/setup.py
+++ b/setup.py
@@ -31,6 +31,8 @@ def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
print(raw_output + "from " + cuda_dir + "/bin\n")
if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
+ # allow minor diffs
+ if bare_metal_minor != torch_binary_minor: return
raise RuntimeError(
"Cuda extensions are being compiled with a version of Cuda that does "
"not match the version used to compile Pytorch binaries. "
- Checkout and prepare
Megatron-DeepSpeed
and install its requirements
git clone https://github.com/bigscience-workshop/Megatron-DeepSpeed
cd Megatron-DeepSpeed
pip install -r requirements.txt
Will work under the Megatron-DeepSpeed
clone
cd Megatron-DeepSpeed
Prepare data for preprocessing
mkdir -p data
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json -O data/gpt2-vocab.json
wget https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt -O data/gpt2-merges.txt
python -c 'from datasets import load_dataset; ds = load_dataset("stas/oscar-en-10k", split="train", keep_in_memory=False); ds.to_json(f"data/oscar-en-10k.jsonl", orient="records", lines=True, force_ascii=False)'
Pre-process a small dataset to be used for training
python tools/preprocess_data.py \
--input data/oscar-en-10k.jsonl \
--output-prefix data/meg-gpt2-oscar-en-10k \
--dataset-impl mmap \
--tokenizer-type GPT2BPETokenizer \
--merge-file data/gpt2-merges.txt \
--vocab data/gpt2-vocab.json \
--append-eod \
--workers 4
now you have data/meg-gpt2-oscar-en-10k, vocab and merges files to pass as arguments to training, the next section shows how to use them.
Note that Megatron wants data/meg-gpt2-oscar-en-10k_text_document
prefix later in --data-path
Here is a tiny model training setup configured over 2 gpus to train on the data we prepared in step 2.
Put it in a script or run it directly.
If you have only 1 gpu, change these 2 lines below to:
N_GPUS=1
TP_SIZE=1
The script:
CHECKPOINT_PATH=checkpoints/gpt2
VOCAB_FILE=data/gpt2-vocab.json
MERGE_FILE=data/gpt2-merges.txt
DATA_PATH=data/meg-gpt2-oscar-en-10k_text_document
TENSORBOARD_PATH=output_dir/tensorboard
N_GPUS=2
MICRO_BATCH_SIZE=1
GLOBAL_BATCH_SIZE=16
TP_SIZE=2
PP_SIZE=1
NLAYERS=2
NHIDDEN=8
NHEADS=2
SEQ_LEN=512
VOCAB_SIZE=50257
SAVE_INTERVAL=50
TRAIN_SAMPLES=10_000
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--rampup-batch-size 2 2 1_000 \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples $TRAIN_SAMPLES \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.95 \
--adam-eps 1e-8 \
--lr 1e-4 \
--lr-warmup-samples 5 \
--min-lr 1e-6 \
--lr-decay-style cosine \
--lr-decay-samples 12 \
--clip-grad 1.0 \
--weight-decay 1e-1 \
--embed-layernorm \
--fp16 \
--partition-activations \
--seed 42 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
"
OUTPUT_ARGS=" \
--exit-interval 100 \
--log-interval 10 \
--save-interval $SAVE_INTERVAL \
--eval-interval 100 \
--eval-iters 10 \
--checkpoint-activations \
"
DATA_ARGS=" \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
--kill-switch-path /tmp/kill-switch \
"
ZERO_STAGE=1
config_json="./ds_config.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
ALL_ARGS="$GPT_ARGS $OUTPUT_ARGS $DATA_ARGS $DEEPSPEED_ARGS"
MASTER_ADDR=localhost
MASTER_PORT=6777
export LAUNCHER="python -u -m torch.distributed.run \
--nproc_per_node $N_GPUS \
--nnodes 1 \
--rdzv_endpoint $MASTER_ADDR:$MASTER_PORT \
--rdzv_backend c10d \
--max_restarts 0 \
--tee 3 \
"
export CMD=" \
$LAUNCHER pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
--distributed-backend nccl \
$ALL_ARGS \
"
echo $CMD
$CMD
You can, of course, run this as a slurm script, but here is a full slurm script example, which has some tweaks to get MASTER_ADDR
and a few other bits right under the SLURM environment on JeanZay, which may or may not be needed if you run it elsewhere.
Remember to wipe out $CHECKPOINT_PATH
, if you change the model shape and there is a checkpoint with the old shapes saved already.