forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmsrresnet_x4c64b16_1xb16-1000k_div2k.py
135 lines (124 loc) · 3.63 KB
/
msrresnet_x4c64b16_1xb16-1000k_div2k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
_base_ = [
'../_base_/default_runtime.py', '../_base_/datasets/sisr_x4_test_config.py'
]
experiment_name = 'msrresnet_x4c64b16_1xb16-1000k_div2k'
work_dir = f'./work_dirs/{experiment_name}'
save_dir = './work_dirs/'
scale = 4
# model settings
model = dict(
type='BaseEditModel',
generator=dict(
type='MSRResNet',
in_channels=3,
out_channels=3,
mid_channels=64,
num_blocks=16,
upscale_factor=scale),
pixel_loss=dict(type='L1Loss', loss_weight=1.0, reduction='mean'),
train_cfg=dict(),
test_cfg=dict(),
data_preprocessor=dict(
type='DataPreprocessor',
mean=[0., 0., 0.],
std=[255., 255., 255.],
))
train_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
color_type='color',
channel_order='rgb'),
dict(
type='LoadImageFromFile',
key='gt',
color_type='color',
channel_order='rgb'),
dict(type='SetValues', dictionary=dict(scale=scale)),
dict(type='PairedRandomCrop', gt_patch_size=128),
dict(
type='Flip',
keys=['img', 'gt'],
flip_ratio=0.5,
direction='horizontal'),
dict(
type='Flip', keys=['img', 'gt'], flip_ratio=0.5, direction='vertical'),
dict(type='RandomTransposeHW', keys=['img', 'gt'], transpose_ratio=0.5),
dict(type='PackInputs')
]
val_pipeline = [
dict(
type='LoadImageFromFile',
key='img',
color_type='color',
channel_order='rgb'),
dict(
type='LoadImageFromFile',
key='gt',
color_type='color',
channel_order='rgb'),
dict(type='PackInputs')
]
# dataset settings
dataset_type = 'BasicImageDataset'
data_root = 'data'
train_dataloader = dict(
num_workers=8,
batch_size=16,
persistent_workers=False,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type=dataset_type,
ann_file='meta_info_DIV2K800sub_GT.txt',
metainfo=dict(dataset_type='div2k', task_name='sisr'),
data_root=data_root + '/DIV2K',
data_prefix=dict(
img='DIV2K_train_LR_bicubic/X4_sub', gt='DIV2K_train_HR_sub'),
filename_tmpl=dict(img='{}', gt='{}'),
pipeline=train_pipeline))
val_dataloader = dict(
num_workers=8,
persistent_workers=False,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
metainfo=dict(dataset_type='set14', task_name='sisr'),
data_root=data_root + '/Set14',
data_prefix=dict(img='LRbicx4', gt='GTmod12'),
pipeline=val_pipeline))
val_evaluator = dict(
type='Evaluator',
metrics=[
dict(type='MAE'),
dict(type='PSNR', crop_border=scale),
dict(type='SSIM', crop_border=scale),
])
train_cfg = dict(
type='IterBasedTrainLoop', max_iters=1_000_000, val_interval=5000)
val_cfg = dict(type='MultiValLoop')
# optimizer
optim_wrapper = dict(
constructor='DefaultOptimWrapperConstructor',
type='OptimWrapper',
optimizer=dict(type='Adam', lr=2e-4, betas=(0.9, 0.999)))
# learning policy
param_scheduler = dict(
type='CosineRestartLR',
by_epoch=False,
periods=[250000, 250000, 250000, 250000],
restart_weights=[1, 1, 1, 1],
eta_min=1e-7)
default_hooks = dict(
checkpoint=dict(
type='CheckpointHook',
interval=5000,
save_optimizer=True,
by_epoch=False,
out_dir=save_dir,
),
timer=dict(type='IterTimerHook'),
logger=dict(type='LoggerHook', interval=100),
param_scheduler=dict(type='ParamSchedulerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
)