-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdata.py
671 lines (529 loc) · 30.4 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
""" Data Handling Class for DisMod-MR"""
import pandas
import networkx as nx
import pymc as mc
import pylab as pl
import simplejson as json
import graphics
def describe_vars(d):
m = mc.Model(d)
df = pandas.DataFrame(columns=['type', 'value', 'logp'],
index=[n.__name__ for n in m.nodes],
dtype=object)
for n in m.nodes:
k = n.__name__
df.ix[k, 'type'] = type(n).__name__
if hasattr(n, 'value'):
rav = pl.ravel(n.value)
if len(rav) == 1:
df.ix[k, 'value'] = n.value
elif len(rav) > 1:
df.ix[k, 'value'] = '%.1f, ...' % rav[0]
df.ix[k, 'logp'] = getattr(n, 'logp', pl.nan)
return df.sort('logp')
def check_convergence(vars):
""" Apply a simple test of convergence to the model: compare
autocorrelation at 25 lags to zero lags. warn about convergence if it exceeds
10% for any stoch """
import dismod3
cells, stochs = dismod3.graphics.tally_stochs(vars)
for s in sorted(stochs, key=lambda s: s.__name__):
tr = s.trace()
if len(tr.shape) == 1:
tr = tr.reshape((len(tr), 1))
for d in range(len(pl.atleast_1d(s.value))):
for k in range(50,100):
acorr = pl.dot(tr[:-k,d]-tr[:k,d].mean(), tr[k:,d]-tr[k:,d].mean()) / pl.dot(tr[k:,d]-tr[k:,d].mean(), tr[k:,d]-tr[k:,d].mean())
if abs(acorr) > .5:
print 'potential non-convergence', s, acorr
return False
return True
class ModelVars(dict):
""" Container class for PyMC Node objects that make up the model
Requirements:
* access vars like a dictionary
* add new vars with += (that functions like an update)
** pretty print information about what was added
* .describe() the state of the nodes in the model
** say if the model has been run, and if it appears to have converged
* .display() the model values in some informative graphical form (may need to be several functions)
"""
def __iadd__(self, d):
""" Over-ride += operator so that it updates dict with another
dict, with verbose information about what is being added
"""
#df = describe_vars(d)
#print "Adding Variables:"
#print df[:10]
#if len(df.index) > 10:
# print '...\n(%d rows total)' % len(df.index)
self.update(d)
return self
def __str__(self):
return '%s\nkeys: %s' % (describe_vars(self), ', '.join(self.keys()))
def describe(self):
print describe_vars(self)
def empirical_priors_from_fit(self, type_list=['i', 'r', 'f', 'p', 'rr']):
""" Find empirical priors for asr of type t
Parameters
----------
type_list : list containing some of the folloring ['i', 'r', 'f', 'p', 'rr', 'pf', 'csmr', 'X']
Results
-------
prior_dict, with distribution for each stoch in model
"""
prior_dict = {}
for t in type_list:
if t in self:
# TODO: eliminate unnecessary dichotomy in storing fe and re priors separately
pdt = dict(random_effects={}, fixed_effects={})
if 'U' in self[t]:
for i, re in enumerate(self[t]['U'].columns):
if isinstance(self[t]['alpha'][i], mc.Node):
pdt['random_effects'][re] = dict(dist='Constant', mu=self[t]['alpha'][i].stats()['mean'])
else:
pdt['random_effects'][re] = dict(dist='Constant', mu=self[t]['alpha'][i])
if 'X' in self[t]:
for i, fe in enumerate(self[t]['X'].columns):
if isinstance(self[t]['beta'][i], mc.Node):
pdt['fixed_effects'][fe] = dict(dist='Constant', mu=self[t]['beta'][i].stats()['mean'])
else:
pdt['fixed_effects'][fe] = dict(dist='Constant', mu=self[t]['beta'][i])
prior_dict[t] = pdt
return prior_dict
class ModelData:
""" ModelData object contains all information for a disease model:
Data, model parameters, information about output
"""
def __init__(self):
self.input_data = pandas.DataFrame(columns=('data_type value area sex age_start age_end year_start year_end' +
' standard_error effective_sample_size lower_ci upper_ci age_weights').split())
self.output_template = pandas.DataFrame(columns='data_type area sex year pop'.split())
self.parameters = dict(i={}, p={}, r={}, f={}, rr={}, X={}, pf={}, ages=range(101))
self.hierarchy = nx.DiGraph()
self.hierarchy.add_node('all')
self.nodes_to_fit = self.hierarchy.nodes()
self.vars = ModelVars()
def get_data(self, data_type):
""" Select data of one type.
:Parameters:
- `data_type` : str, one of 'i', 'r', 'f', 'p', 'rr', 'pf', 'm', 'X', or 'csmr'
:Results:
- DataFrame of selected data type.
"""
if len(self.input_data) > 0:
return self.input_data[self.input_data['data_type'] == data_type]
else:
return self.input_data
def describe(self, data_type):
G = self.hierarchy
df = self.get_data(data_type)
for n in nx.dfs_postorder_nodes(G, 'all'):
G.node[n]['cnt'] = len(df[df['area']==n].index) + pl.sum([G.node[c]['cnt'] for c in G.successors(n)])
G.node[n]['depth'] = nx.shortest_path_length(G, 'all', n)
for n in nx.dfs_preorder_nodes(G, 'all'):
if G.node[n]['cnt'] > 0:
print ' *'*G.node[n]['depth'], n, int(G.node[n]['cnt'])
def keep(self, areas=['all'], sexes=['male', 'female', 'total'], start_year=-pl.inf, end_year=pl.inf):
""" Modify model to feature only desired area/sex/year(s)
:Parameters:
- `areas` : list of str, optional
- `sexes` : list of str, optional
- `start_year` : int, optional
- `end_year` : int, optional
"""
if 'all' not in areas:
self.hierarchy.remove_node('all')
for area in areas:
self.hierarchy.add_edge('all', area)
self.hierarchy = nx.bfs_tree(self.hierarchy, 'all')
def relevant_row(i):
area = self.input_data['area'][i]
return (area in self.hierarchy) or (area == 'all')
self.input_data = self.input_data.select(relevant_row)
self.nodes_to_fit = set(self.hierarchy.nodes()) & set(self.nodes_to_fit)
self.input_data = self.input_data.select(lambda i: self.input_data['sex'][i] in sexes)
self.input_data = self.input_data.select(lambda i: self.input_data['year_end'][i] >= start_year)
self.input_data = self.input_data.select(lambda i: self.input_data['year_start'][i] <= end_year)
print 'kept %d rows of data' % len(self.input_data.index)
def predict_for(data_type, area, year, sex):
"""
# TODO: refactor prediction code from covariate_model.py into ism.py
"""
assert 0, 'Not yet implemented'
import covariate_model
reload(covariate_model)
self.estimates = self.estimates.append(pandas.DataFrame())
def save(self, path):
""" Saves all model data in human-readable files
:Parameters:
- `path` : str, directory to save in
:Results:
- Saves files to specified path, overwritting what was there before
"""
self.input_data.to_csv(path + '/input_data.csv')
self.output_template.to_csv(path + '/output_template.csv')
json.dump(self.parameters, open(path + '/parameters.json', 'w'), indent=2)
json.dump(dict(nodes=[[n, self.hierarchy.node[n]] for n in sorted(self.hierarchy.nodes())],
edges=[[u, v, self.hierarchy.edge[u][v]] for u,v in sorted(self.hierarchy.edges())]),
open(path + '/hierarchy.json', 'w'), indent=2)
json.dump(self.nodes_to_fit, open(path + '/nodes_to_fit.json', 'w'), indent=2)
@staticmethod
def load(path):
""" Load all model data
:Parameters:
- `path` : str, directory to save in
:Results:
- ModelData with all input data
.. note::
`path` must contain the following files
- :ref:`input_data-label`
- :ref:`output_template-label`
- :ref:`hierarchy-label`
- :ref:`parameters-label`
- :ref:`nodes_to_fit-label`
"""
d = ModelData()
# TODO: catch _csv.Error and retry, to give j drive time to sync
d.input_data = pandas.DataFrame.from_csv(path + '/input_data.csv')
# ensure that certain columns are float
for field in 'value standard_error upper_ci lower_ci effective_sample_size'.split():
#d.input_data.dtypes[field] = float # TODO: figure out classy way like this, that works
d.input_data[field] = pl.array(d.input_data[field], dtype=float)
d.output_template = pandas.DataFrame.from_csv(path + '/output_template.csv')
d.parameters = json.load(open(path + '/parameters.json'))
hierarchy = json.load(open(path + '/hierarchy.json'))
d.hierarchy.add_nodes_from(hierarchy['nodes'])
d.hierarchy.add_edges_from(hierarchy['edges'])
d.nodes_to_fit = json.load(open(path + '/nodes_to_fit.json'))
return d
@staticmethod
def from_gbd_json(fname):
""" Create ModelData object from old DM3 JSON file
:Parameters:
- `fname` : str, filename of JSON file
:Results:
- returns new ModelData object
"""
print 'loading %s' % fname
dm = json.load(open(fname))
return ModelData.from_gbd_jsons(dm)
@staticmethod
def from_gbd_jsons(dm):
""" Create ModelData object from old DM3 JSON file
:Parameters:
- `dm` : str, the JSON data
:Results:
- returns new ModelData object
"""
# load some ancillary data from the gbd
import dismod3
import csv
dm['countries_for'] = dict(
[[dismod3.utils.clean(x[0]), x[1:]] for x in csv.reader(open(dismod3.settings.CSV_PATH + 'country_region.csv'))]
)
dm['population_by_age'] = dict(
[[(r['Country Code'], r['Year'], r['Sex']),
[max(.001,float(r['Age %d Population' % i])) for i in range(dismod3.settings.MAX_AGE)]]
for r in csv.DictReader(open(dismod3.settings.CSV_PATH + 'population.csv'))
if len(r['Country Code']) == 3]
)
cov_list = []
asdr_list = []
for slug in dm['params'].get('covariates', {}).get('Country_level', []):
if dm['params']['covariates']['Country_level'][slug]['rate']['value'] or \
dm['params']['covariates']['Country_level'][slug]['error']['value']:
if slug.startswith('lnASDR_'):
asdr_list.append(slug.replace('lnASDR_', ''))
else:
cov_list.append(slug)
covs = pandas.DataFrame()
try:
import MySQLdb
conn = MySQLdb.connect(host='newhalem.ihme.washington.edu', user='codmod', passwd='gbd2011!', db='codmod') # not for repo
cursor = conn.cursor()
if len(cov_list) > 0:
columns = 'iso3,year,age,sex,%s' % ','.join(cov_list)
cursor.execute("SELECT %s FROM all_covariates" % columns)
covs = pandas.DataFrame([list(row) for row in cursor.fetchall()], columns=columns.split(','))
# change sex columns from 1/2 to 'male'/'female'
covs['sex'] = covs['sex'].map({1:'male', 2:'female', 3:'total'})
# index data by (area, sex, year)
covs = covs.groupby(['iso3', 'sex', 'year']).mean()
for cause in asdr_list:
columns = 'iso3,year,sex,cause_analytical,mean_death'
if cause in ['A', 'B', 'C']: # special case, because cause != cause_analytical
cursor.execute("SELECT %s FROM g_country WHERE cause='%s' and age=98"%(columns, cause))
else:
cursor.execute("SELECT %s FROM g_country WHERE cause_analytical='%s' and age=98"%(columns, cause))
asdr = pandas.DataFrame([list(row) for row in cursor.fetchall()],
columns=columns.split(','))
asdr['sex'] = asdr['sex'].map({1:'male', 2:'female', 3:'total'})
asdr = asdr.groupby(['iso3', 'sex', 'year']).mean()
slug = 'lnASDR_%s'%cause
# TODO: figure out where negative values could come from in CODEm db
asdr = asdr[asdr['mean_death'] >= 0]
asdr[slug] = pl.log(1.e-12 + asdr['mean_death'])
if len(covs.index) > 0:
covs = covs.join(asdr.ix[:, [slug]])
else:
covs = asdr.filter([slug])
cursor.close()
conn.close()
if len(covs.index) > 0:
# drop blank country-years
covs = covs.dropna(axis=0, how='all')
# normalize all columns of covs
covs = covs / covs.std()
# add data for sex 'total'
covs_total = covs.delevel().groupby(['iso3', 'year']).mean().delevel()
covs_total['sex'] = 'total'
covs = covs.delevel().append(covs_total, ignore_index=True).groupby(['iso3', 'sex', 'year']).mean()
covs_total['sex'] = 'all'
covs = covs.delevel().append(covs_total, ignore_index=True).groupby(['iso3', 'sex', 'year']).mean()
# prepare covs to deal with regional data
country_to_region = {}
for region in dismod3.settings.gbd_regions:
for area in dm['countries_for'][dismod3.utils.clean(region)]:
country_to_region[area] = dismod3.utils.clean(region)
covs['region'] = pandas.Series(covs.index.get_level_values(0)).map(country_to_region) # FIXME: needs test
covs['pop'] = [pl.sum(dm['population_by_age'].get((i[0], str(i[2]), i[1]), [1.])) for i in covs.index]
except ImportError:
print 'WARNING: MySQL library not found, not merging country-level covariates'
# TODO: test cases
## no covariates
## study level only
## country cov
## asdr
## study + country
## study + asdr
## country + asdr
## study + country + asdr
d = ModelData()
d.input_data = ModelData._input_data_from_gbd_json(dm, covs)
d.output_template = ModelData._output_template_from_gbd_json(dm, covs)
d.parameters = ModelData._parameters_from_gbd_json(dm)
d.hierarchy, d.nodes_to_fit = ModelData._hierarchy_from_gbd_json(dm)
print 'load completed successfully'
return d
@staticmethod
def _input_data_from_gbd_json(dm, covs):
""" translate input data"""
import dismod3
# remove any rows with 'ignore' columns set to 1
dm['data'] = [d for d in dm['data'] if not (d.get('Ignore') or d.get('ignore'))]
# remove any data with type-specific heterogeneity set to Unusable
if 'global_priors' in dm['params']:
for t in dm['params']['global_priors']['heterogeneity']:
if dm['params']['global_priors']['heterogeneity'][t] == 'Unusable':
print '%s has heterogeneity unusable, dropping %d rows' % (t, len([d for d in dm['data'] if d['data_type'] == t + ' data']))
dm['data'] = [d for d in dm['data'] if d['data_type'] != t + ' data']
input_data = {}
for field in 'effective_sample_size age_start age_end year_start year_end'.split():
input_data[field] = []
for row in dm['data']:
val = row.get(field, '')
if val == '':
val = pl.nan
input_data[field].append(float(val))
input_data['sex'] = []
for row in dm['data']:
input_data['sex'].append(row['sex'])
# replace sex 'all' with sex 'total'
if input_data['sex'][-1] == 'all':
input_data['sex'][-1] = 'total'
assert input_data['sex'][-1] != ''
new_type_name = {'incidence data':'i', 'prevalence data': 'p', 'remission data': 'r', 'excess-mortality data': 'f',
'prevalence x excess-mortality data': 'pf', 'all-cause mortality data': 'm_all', 'relative-risk data': 'rr',
'duration data': 'X', 'smr data': 'smr', 'cause-specific mortality data': 'csmr', 'mortality data': 'm_with'}
input_data['data_type'] = [new_type_name[row['data_type']] for row in dm['data']]
for field in 'value standard_error lower_ci upper_ci'.split():
input_data[field] = []
for row in dm['data']:
val = row.get(field, '')
if val == '':
val = pl.nan
else:
val = float(val) / float(row.get('units', '1').replace(',', ''))
input_data[field].append(val)
input_data['area'] = []
for row in dm['data']:
val = row.get('country_iso3_code', '')
if val == '' or val == 'all':
val = dismod3.utils.clean(row['gbd_region'])
input_data['area'].append(val)
assert input_data['area'][-1] != ''
input_data['age_weights'] = [';'.join(['%.4f'%w for w in row.get('age_weights', [])]) for row in dm['data']] # store age_weights as semi-colon delimited text, since Pandas doesn't like arrays in arrays and doesn't save comma-separated fields correctly
# add selected covariates
if 'covariates' in dm['params']:
for level in ['Country_level', 'Study_level']:
for cv in dm['params']['covariates'].get(level, []):
if dm['params']['covariates'][level][cv]['rate']['value']:
input_data['x_%s'%cv] = []
for row in dm['data']:
if level == 'Country_level':
if row['data_type'] == 'all-cause mortality data':
input_data['x_%s'%cv].append(0.) # don't bother to merge covariates into all-cause mortality data
elif row['region'] == 'all':
input_data['x_%s'%cv].append(0.) # don't bother to merge covariates into regionall data
elif row.get('country_iso3_code'):
iso3 = row['country_iso3_code']
# special case for countries that CODEm does not report on
if 'ASDR' in cv:
if iso3 in ['HKG', 'MAC']:
iso3 = 'TWN' # TODO: average over CHN, PRK, TWN
if iso3 in ['PRI', 'BMU']:
iso3 = 'CUB' # TODO: average over caribbean countries
input_data['x_%s'%cv].append(
covs[cv][iso3, row['sex'],
pl.clip((row['year_start']+row['year_end'])/2, 1980., 2012.)]
)
else:
# handle regional data
df = covs[(covs['region'] == dismod3.utils.clean(row['gbd_region']))&
(covs.index.get_level_values(1)==row['sex'])&
(covs.index.get_level_values(2)==pl.clip((row['year_start']+row['year_end'])/2, 1980., 2012.))]
#input_data['x_%s'%cv].append(
# (df[cv]*df['pop']).sum() / df['pop'].sum()
# )
input_data['x_%s'%cv].append(0.) # TODO: remove regional data
elif level == 'Study_level':
input_data['x_%s'%cv].append(float(row.get(dismod3.utils.clean(cv), '') or 0.))
# also include column of input data for 'z_%s'%cv if it is requested
if dm['params']['covariates'][level][cv]['error']['value']:
input_data['z_%s'%cv] = [float(row.get(dismod3.utils.clean(cv), '') or 0.) for row in dm['data']]
input_data = pandas.DataFrame(input_data)
# replace age_end 1 with age_end 0, correcting a common mistake in data entry
i = (input_data['age_start']==0) & (input_data['age_end']==1)
if i.sum() > 0:
print 'WARNING: correcting age_end in %d rows that have age_start == 0, age_end == 1 (old format uses "demographic" notation)' % i.sum()
input_data['age_end'][i] = 0
# replace triple underscores with single underscore, a problem with consistency in the spacing in "North Africa / Middle East"
input_data['area'] = [a.replace('___', '_') for a in input_data['area']]
# print checks of data
for i, row in input_data.T.iteritems():
if pl.isnan(row['value']):
print 'WARNING: value in row %d is missing' % i
input_data = input_data[~pl.isnan(input_data['value'])]
return input_data
@staticmethod
def _output_template_from_gbd_json(dm, covs):
""" generate output template"""
import dismod3
output_template = {}
for field in 'area sex year pop'.split():
output_template[field] = []
if 'covariates' in dm['params']:
for level in ['Country_level', 'Study_level']:
for cv in dm['params']['covariates'].get(level, []):
if dm['params']['covariates'][level][cv]['rate']['value']:
output_template['x_%s'%cv] = []
for region in dismod3.settings.gbd_regions:
for area in dm['countries_for'][dismod3.utils.clean(region)]:
for year in dismod3.settings.gbd_years:
for sex in dismod3.settings.gbd_sexes:
sex = dismod3.utils.clean(sex)
output_template['area'].append(area)
output_template['sex'].append(sex)
output_template['year'].append(float(year))
output_template['pop'].append(pl.sum(dm['population_by_age'][area, year, sex]))
# merge in country level covariates
if 'covariates' in dm['params']:
for level in ['Country_level', 'Study_level']:
for cv in dm['params']['covariates'].get(level, []):
if dm['params']['covariates'][level][cv]['rate']['value']:
if level == 'Country_level' and dm['params']['covariates'][level][cv]['value']['value'] == '':
# people usually mean CSV, so interpret blanks to mean this
dm['params']['covariates'][level][cv]['value']['value'] = 'Country Specific Value'
if dm['params']['covariates'][level][cv]['value']['value'] == 'Country Specific Value':
if cv in covs:
output_template['x_%s' % cv].append(covs[cv].get((area, sex, int(year)), pl.nan))
else:
raise KeyError, 'covariate %s not found for output template (did you set a reference value? did you "Calculate covariates for model data"?)' % cv
else:
output_template['x_%s'%cv].append(float(dm['params']['covariates'][level][cv]['value']['value'] or 0.))
return pandas.DataFrame(output_template)
@staticmethod
def _parameters_from_gbd_json(dm):
""" copy expert priors"""
parameters = ModelData().parameters
old_name = dict(i='incidence', p='prevalence', rr='relative_risk', r='remission', f='excess_mortality', X='duration', pf='prevalence_x_excess-mortality')
for t in 'i p r f rr X pf'.split():
if 'global_priors' in dm['params']:
parameters[t]['parameter_age_mesh'] = dm['params']['global_priors']['parameter_age_mesh']
parameters[t]['y_maximum'] = dm['params']['global_priors']['y_maximum']
for prior in 'smoothness heterogeneity level_value level_bounds increasing decreasing'.split():
if old_name[t] in dm['params']['global_priors'][prior]:
parameters[t][prior] = dm['params']['global_priors'][prior][old_name[t]]
# make 1000 effectively infinite, because the gui only goes up to 1000
if 'level_bounds' in parameters[t] and parameters[t]['level_bounds']['upper'] == 1000.:
parameters[t]['level_bounds']['upper'] = 1e6
parameters[t]['fixed_effects'] = {}
parameters[t]['random_effects'] = {}
if 'global_priors' in dm['params']:
parameters['ages'] = range(dm['params']['global_priors']['parameter_age_mesh'][0], dm['params']['global_priors']['parameter_age_mesh'][-1]+1)
for t in 'i p r f'.split():
key = 'sex_effect_%s' % old_name[t]
if key in dm['params']:
prior = dm['params'][key]
parameters[t]['fixed_effects']['x_sex'] = dict(dist='Normal', mu=pl.log(prior['mean']),
sigma=(pl.log(prior['upper_ci']) - pl.log(prior['lower_ci']))/(2*1.96))
key = 'region_effect_%s' % old_name[t]
if key in dm['params']:
prior = dm['params'][key]
for iso3 in dm['countries_for']['world']:
parameters[t]['random_effects'][iso3] = dict(dist='TruncatedNormal', mu=0., sigma=prior['std'], lower=-2*prior['std'], upper=2*prior['std'])
# include alternative prior on sigma_alpha based on heterogeneity
for i in range(5): # max depth of hierarchy is 5
effect = 'sigma_alpha_%s_%d'%(t,i)
#parameters[t]['random_effects'][effect] = dict(dist='TruncatedNormal', mu=.01, sigma=.01, lower=.01, upper=.05)
#if 'heterogeneity' in parameters[t]:
# if parameters[t]['heterogeneity'] == 'Moderately':
# parameters[t]['random_effects'][effect] = dict(dist='TruncatedNormal', mu=.05, sigma=.05, lower=.01, upper=1.)
# elif parameters[t]['heterogeneity'] == 'Very':
# parameters[t]['random_effects'][effect] = dict(dist='TruncatedNormal', mu=.01, sigma=.01, lower=.002, upper=.2)
return parameters
@staticmethod
def _hierarchy_from_gbd_json(dm):
""" setup hierarchy and nodes_to_fit"""
import dismod3
superregions = [[15, 5, 9, 0, 12], [7, 8, 1], [17, 18, 19, 20], [14], [3], [4, 2, 16], [10, 11, 13, 6]]
hierarchy = nx.DiGraph()
nodes_to_fit = ['all']
weight = pl.nan
for i, superregion in enumerate(superregions):
super_region_node = 'super-region_%d'%(i+1)
hierarchy.add_edge('all', super_region_node, weight=weight)
for j in superregion:
#hierarchy.add_node(super_region_node, pop=0.)
region_node = str(dismod3.utils.clean(dismod3.settings.gbd_regions[j]))
nodes_to_fit.append(region_node)
#hierarchy.add_node(region_node, pop=0.)
hierarchy.add_edge(super_region_node, region_node, weight=weight)
for iso3 in dm['countries_for'][region_node]:
country_node = iso3
hierarchy.add_node(country_node,pop=0)
for year in [1990, 2005, 2010]:
for sex in 'male female'.split():
pop = sum(dm['population_by_age'][iso3, str(year), sex])
hierarchy.node[country_node]['pop'] += pop
hierarchy.add_edge(region_node, country_node, weight=weight)
#hierarchy.node[region_node]['pop'] += pop
#hierarchy.node[super_region_node]['pop'] += pop
return hierarchy, nodes_to_fit
def fetch_disease_model_if_necessary(id, dir_name):
try:
model = ModelData.load(dir_name)
print 'loaded data from new format from %s' % dir_name
except (IOError, AssertionError):
import os
os.makedirs(dir_name)
import dismod3.disease_json
dm = dismod3.load_disease_model(id)
import simplejson as json
model = ModelData.from_gbd_jsons(json.loads(dm.to_json()))
model.save(dir_name)
print 'loaded data from json, saved in new format for next time in %s' % dir_name
print 'model has %d rows of input data' % len(model.input_data.index)
return model
load = ModelData.load