-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathold_cov_data.py
281 lines (216 loc) · 12.5 KB
/
old_cov_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from data import ModelData
import pylab as pl
import pandas
import networkx as nx
def from_gbd_json(fname):
""" Create ModelData object from old DM3 JSON file
Parameters
----------
fname : str, filename of JSON file
Results
-------
returns new ModelData object
"""
print 'loading %s' % fname
dm = json.load(open(fname))
return from_gbd_jsons(dm)
def from_gbd_jsons(dm):
""" Create ModelData object from old DM3 JSON file
Parameters
----------
dm : str, the JSON data
Results
-------
returns new ModelData object
"""
# load some ancillary data from the gbd
import dismod3
import csv
dm['countries_for'] = dict(
[[dismod3.utils.clean(x[0]), x[1:]] for x in csv.reader(open(dismod3.settings.CSV_PATH + 'country_region.csv'))]
)
dm['population_by_age'] = dict(
[[(r['Country Code'], r['Year'], r['Sex']),
[max(.001,float(r['Age %d Population' % i])) for i in range(dismod3.settings.MAX_AGE)]]
for r in csv.DictReader(open(dismod3.settings.CSV_PATH + 'population.csv'))
if len(r['Country Code']) == 3]
)
d = ModelData()
d.input_data = _input_data_from_gbd_json(dm)
d.output_template = _output_template_from_gbd_json(dm)
d.parameters = _parameters_from_gbd_json(dm)
d.hierarchy, d.nodes_to_fit = _hierarchy_from_gbd_json(dm)
print 'load completed successfully'
return d
def _input_data_from_gbd_json(dm):
""" translate input data"""
import dismod3
# remove any rows with 'ignore' columns set to 1
dm['data'] = [d for d in dm['data'] if not (d.get('Ignore') or d.get('ignore'))]
# remove any data with type-specific heterogeneity set to Unusable
if 'global_priors' in dm['params']:
for t in dm['params']['global_priors']['heterogeneity']:
if dm['params']['global_priors']['heterogeneity'][t] == 'Unusable':
print '%s has heterogeneity unusable, dropping %d rows' % (t, len([d for d in dm['data'] if d['data_type'] == t + ' data']))
dm['data'] = [d for d in dm['data'] if d['data_type'] != t + ' data']
input_data = {}
for field in 'effective_sample_size age_start age_end year_start year_end'.split():
input_data[field] = []
for row in dm['data']:
val = row.get(field, '')
if val == '':
val = pl.nan
input_data[field].append(float(val))
input_data['sex'] = []
for row in dm['data']:
input_data['sex'].append(row['sex'])
# replace sex 'all' with sex 'total'
if input_data['sex'][-1] == 'all':
input_data['sex'][-1] = 'total'
assert input_data['sex'][-1] != ''
new_type_name = {'incidence data':'i', 'prevalence data': 'p', 'remission data': 'r', 'excess-mortality data': 'f',
'prevalence x excess-mortality data': 'pf', 'all-cause mortality data': 'm_all', 'relative-risk data': 'rr',
'duration data': 'X', 'smr data': 'smr', 'cause-specific mortality data': 'csmr', 'mortality data': 'm_with'}
input_data['data_type'] = [new_type_name[row['data_type']] for row in dm['data']]
for field in 'value standard_error lower_ci upper_ci'.split():
input_data[field] = []
for row in dm['data']:
val = row.get(field, '')
if val == '':
val = pl.nan
else:
val = float(val) / float(row.get('units', '1').replace(',', ''))
input_data[field].append(val)
input_data['area'] = []
for row in dm['data']:
val = row.get('country_iso3_code', '')
if val == '' or val == 'all':
val = dismod3.utils.clean(row['gbd_region'])
input_data['area'].append(val)
assert input_data['area'][-1] != ''
input_data['age_weights'] = [';'.join(['%.4f'%w for w in row.get('age_weights', [])]) for row in dm['data']] # store age_weights as semi-colon delimited text, since Pandas doesn't like arrays in arrays and doesn't save comma-separated fields correctly
# add selected covariates
if 'covariates' in dm['params']:
for level in ['Country_level', 'Study_level']:
for cv in dm['params']['covariates'][level]:
if dm['params']['covariates'][level][cv]['rate']['value']:
input_data['x_%s'%cv] = [float(row.get(dismod3.utils.clean(cv), '') or 0.) for row in dm['data']]
# also include column of input data for 'z_%s'%cv if it is requested
if dm['params']['covariates'][level][cv]['error']['value']:
input_data['z_%s'%cv] = [float(row.get(dismod3.utils.clean(cv), '') or 0.) for row in dm['data']]
input_data = pandas.DataFrame(input_data)
# replace age_end 1 with age_end 0, correcting a common mistake in data entry
i = (input_data['age_start']==0) & (input_data['age_end']==1)
if i.sum() > 0:
print 'WARNING: correcting age_end in %d rows that have age_start == 0, age_end == 1 (old format uses "demographic" notation)' % i.sum()
input_data['age_end'][i] = 0
# replace triple underscores with single underscore, a problem with consistency in the spacing in "North Africa / Middle East"
input_data['area'] = [a.replace('___', '_') for a in input_data['area']]
# print checks of data
for i, row in input_data.T.iteritems():
if pl.isnan(row['value']):
print 'WARNING: value in row %d is missing' % i
input_data = input_data[~pl.isnan(input_data['value'])]
return input_data
def _output_template_from_gbd_json(dm):
""" generate output template"""
import dismod3
output_template = {}
for field in 'area sex year pop'.split():
output_template[field] = []
if 'covariates' in dm['params']:
for level in ['Country_level', 'Study_level']:
for cv in dm['params']['covariates'][level]:
if dm['params']['covariates'][level][cv]['rate']['value']:
output_template['x_%s'%cv] = []
for region in dismod3.settings.gbd_regions:
for area in dm['countries_for'][dismod3.utils.clean(region)]:
for year in dismod3.settings.gbd_years:
for sex in dismod3.settings.gbd_sexes:
sex = dismod3.utils.clean(sex)
output_template['area'].append(area)
output_template['sex'].append(sex)
output_template['year'].append(float(year))
output_template['pop'].append(pl.sum(dm['population_by_age'][area, year, sex]))
# merge in country level covariates
if 'covariates' in dm['params']:
for level in ['Country_level', 'Study_level']:
for cv in dm['params']['covariates'][level]:
if dm['params']['covariates'][level][cv]['rate']['value']:
if level == 'Country_level' and dm['params']['covariates'][level][cv]['value']['value'] == '':
# people usually mean CSV, so interpret blanks to mean this
dm['params']['covariates'][level][cv]['value']['value'] = 'Country Specific Value'
if dm['params']['covariates'][level][cv]['value']['value'] == 'Country Specific Value':
if 'derived_covariate' in dm['params'] and cv in dm['params']['derived_covariate']:
output_template['x_%s'%cv].append(dm['params']['derived_covariate'][cv].get('%s+%s+%s'%(area, year, sex)))
else:
raise KeyError, 'covariate %s not found for output template (did you set a reference value? did you "Calculate covariates for model data"?)' % cv
else:
output_template['x_%s'%cv].append(float(dm['params']['covariates'][level][cv]['value']['value'] or 0.))
return pandas.DataFrame(output_template)
def _parameters_from_gbd_json(dm):
""" copy expert priors"""
parameters = ModelData().parameters
old_name = dict(i='incidence', p='prevalence', rr='relative_risk', r='remission', f='excess_mortality', X='duration', pf='prevalence_x_excess-mortality')
for t in 'i p r f rr X pf'.split():
if 'global_priors' in dm['params']:
parameters[t]['parameter_age_mesh'] = dm['params']['global_priors']['parameter_age_mesh']
parameters[t]['y_maximum'] = dm['params']['global_priors']['y_maximum']
for prior in 'smoothness heterogeneity level_value level_bounds increasing decreasing'.split():
if old_name[t] in dm['params']['global_priors'][prior]:
parameters[t][prior] = dm['params']['global_priors'][prior][old_name[t]]
# make 1000 effectively infinite, because the gui only goes up to 1000
if 'level_bounds' in parameters[t] and parameters[t]['level_bounds']['upper'] == 1000.:
parameters[t]['level_bounds']['upper'] = 1e6
parameters[t]['fixed_effects'] = {}
parameters[t]['random_effects'] = {}
if 'global_priors' in dm['params']:
parameters['ages'] = range(dm['params']['global_priors']['parameter_age_mesh'][0], dm['params']['global_priors']['parameter_age_mesh'][-1]+1)
for t in 'i p r f'.split():
key = 'sex_effect_%s' % old_name[t]
if key in dm['params']:
prior = dm['params'][key]
parameters[t]['fixed_effects']['x_sex'] = dict(dist='Normal', mu=pl.log(prior['mean']),
sigma=(pl.log(prior['upper_ci']) - pl.log(prior['lower_ci']))/(2*1.96))
key = 'region_effect_%s' % old_name[t]
if key in dm['params']:
prior = dm['params'][key]
for iso3 in dm['countries_for']['world']:
parameters[t]['random_effects'][iso3] = dict(dist='TruncatedNormal', mu=0., sigma=prior['std'], lower=-2*prior['std'], upper=2*prior['std'])
# include alternative prior on sigma_alpha based on heterogeneity
for i in range(5): # max depth of hierarchy is 5
effect = 'sigma_alpha_%s_%d'%(t,i)
#parameters[t]['random_effects'][effect] = dict(dist='TruncatedNormal', mu=.01, sigma=.01, lower=.01, upper=.05)
#if 'heterogeneity' in parameters[t]:
# if parameters[t]['heterogeneity'] == 'Moderately':
# parameters[t]['random_effects'][effect] = dict(dist='TruncatedNormal', mu=.05, sigma=.05, lower=.01, upper=1.)
# elif parameters[t]['heterogeneity'] == 'Very':
# parameters[t]['random_effects'][effect] = dict(dist='TruncatedNormal', mu=.01, sigma=.01, lower=.002, upper=.2)
return parameters
def _hierarchy_from_gbd_json(dm):
""" setup hierarchy and nodes_to_fit"""
import dismod3
superregions = [[15, 5, 9, 0, 12], [7, 8, 1], [17, 18, 19, 20], [14], [3], [4, 2, 16], [10, 11, 13, 6]]
hierarchy = nx.DiGraph()
nodes_to_fit = ['all']
weight = pl.nan
for i, superregion in enumerate(superregions):
super_region_node = 'super-region_%d'%i
hierarchy.add_edge('all', super_region_node, weight=weight)
for j in superregion:
#hierarchy.add_node(super_region_node, pop=0.)
region_node = str(dismod3.utils.clean(dismod3.settings.gbd_regions[j]))
nodes_to_fit.append(region_node)
#hierarchy.add_node(region_node, pop=0.)
hierarchy.add_edge(super_region_node, region_node, weight=weight)
for iso3 in dm['countries_for'][region_node]:
country_node = iso3
hierarchy.add_node(country_node,pop=0)
for year in [1990, 2005, 2010]:
for sex in 'male female'.split():
pop = sum(dm['population_by_age'][iso3, str(year), sex])
hierarchy.node[country_node]['pop'] += pop
hierarchy.add_edge(region_node, country_node, weight=weight)
#hierarchy.node[region_node]['pop'] += pop
#hierarchy.node[super_region_node]['pop'] += pop
return hierarchy, nodes_to_fit