-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNAseq_HPSCs.STAG2KO.DEGs.Rmd
417 lines (392 loc) · 19.9 KB
/
RNAseq_HPSCs.STAG2KO.DEGs.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
---
title: "RNAseq CD34_HSPCs_SA2KO_CRISPR_d14"
author: "Alexander Fischer"
date: "20 05 2020"
output: html_document
---
###rbioc_3-12
# Loading libraries needed for data processing and analysis
```{r, echo = FALSE, include = FALSE}
library(edgeR)
library(GGally)
library(ggplot2)
library(ggrepel)
library(gplots)
library(RColorBrewer)
library(reshape2)
library(sqldf)
library(Rtsne)
library(dplyr)
library(readr)
library(tidyr)
library(stringr)
library(hexbin)
library(plyr)
library(pheatmap)
library(gridExtra)
```
# Defining path variables at the start
```{r}
DIR_DAT<-"/misc/data"
PROJDIR<-file.path(DIR_DAT,"analysis/project_cohesin")
WORKDIR<-file.path(PROJDIR,"CD34/CRISPR/RNAseq") #main input/output directory
RPGDIR<-file.path(WORKDIR,"ReadsPerGene") #input directory with the .txt files containing the reads per gene information
ANALDIR<-file.path(WORKDIR,"Analysis") #output of analysis results
FIGDIR<-file.path(WORKDIR,"Plots") #output of figure directories
ANALn="RNAseq_HSPCs_SA2KO_d14" #Name the particular analysis
#path to the ShortTranscriptID for a fully functional annotation
STIDp="/misc/software/ngs/genome/sequence/GRCh38.PRI_p10/STAR_transcriptIDshort.txt"
##Directory for external Datasets for Comparisons
ANALDIRAML<-file.path(PROJDIR,"Cohesin_AML/RNAseq/Analysis/Resulttables/RNAseq_Cohesin_AML_AF3")
DIRKDs<-file.path(PROJDIR,"CD34/RNAseq/Analysis/Plots/RNAseq_CD34_CohesinKD")
#new dirs
dir.create(ANALDIR)
dir.create(file.path(ANALDIR,ANALn))
dir.create(file.path(FIGDIR,ANALn))
dir.create(file.path(FIGDIR,ANALn,"Clustering"))
dir.create(file.path(FIGDIR,ANALn,"GSEA"))
```
# Reading in metadata
```{r}
#reading in the metadCRISPata file as a pilot
metadCRISP<-read.table(file=file.path(WORKDIR,"Metadata_RNAseq_HSPCs_STAG2_KO_d14.txt"),sep = "\t",header=TRUE)
metadCRISP
#consistency check
dim(metadCRISP)
```
# RCT Assembly in R
## generating short transcript ID variable
```{r}
#character vector containing the short transcript ID with consistency check
stid<-read.delim(STIDp,skip = 4,header = FALSE)[,1]
#consistency check
length(stid)
head(stid)
```
## get reads per gene deposited in RPGDIR
```{r}
#reading in all file names using an input directory only containing the files of interest..the variable "reads per gene list"
rpgl<-list.files(path = RPGDIR,pattern = "RNA_",ignore.case = FALSE) #reading in the filenames as a list
length(rpgl) #this should be equal to the number of samples you want to analyse
#a sorting vector according to RNAseq_ID
sortvec<-sapply(as.character(metadCRISP$SampleID), function(x) grep(x,rpgl))
sortvec
length(sortvec)
#create an empty matrix as data frame, which can be written in in the following for-loop
counts<-as.data.frame(matrix(),row.names = NULL)
#in this forloop the read counts of the samples in the right order are extracted and appended to the counts data.frame
for (i in sortvec) {
rpgf<-read.delim(file.path(RPGDIR,rpgl[i]),sep = "\t",header = FALSE,check.names = TRUE,skip = 4,row.names = NULL)
counts<-cbind(counts,rpgf[,4])
}
counts<-counts[,(-1)] #leaving out the empty column
colnames(counts)<-metadCRISP$SampleID
rownames(counts)<-stid
ncol(counts) #all samples there?
#write output
write.table(counts,file=file.path(ANALDIR,ANALn,"RNAseq_HSPCs_STAG2_KO_d14_counts_raw.txt"),sep = "\t",col.names=TRUE, quote=FALSE)
counts<-read.table(file=file.path(ANALDIR,ANALn,"RNAseq_HSPCs_STAG2_KO_d14_counts_raw.txt"),sep = "\t",header=TRUE)
```
# Define group Variables
```{r}
#define factors
Treatment<-factor(as.character(metadCRISP$Treatment),levels=c("ctrl","SA2_KO")) #cave: level adjustment
timepoint<-factor(as.character(metadCRISP$timepoint))
CRISPRefficency<-factor(metadCRISP$CRISPRESSOpercMut)
donor<-factor(as.character(metadCRISP$donor))
plot_ID<-factor((metadCRISP$plot_ID), levels=c("21_ctrl_d14","21_SA2_KO_d14","27_ctrl_d14","27_SA2_KO_d14","28_ctrl_d14","28_SA2_KO_d14","29_ctrl_d14","29_SA2_KO_d14","31_ctrl_d14","31_SA2_KO_d14"))
#combination of treatment and timepoint
metadCRISP$tpTreat<-factor(paste0("d",metadCRISP$timepoint,"_",metadCRISP$Treatment),levels = c("d14_ctrl","d14_SA2_KO"))
tpTreat<-metadCRISP$tpTreat
#Create a genes data frame to add to the dglist object
genes.df<-as.data.frame(strsplit2(stid,"[$]"))
colnames(genes.df)<-c("EnsemblID","GeneSymbol","Length","GeneType")
genes.df$EnsemblID<-as.character(genes.df$EnsemblID)
genes.df$GeneSymbol<-as.character(genes.df$GeneSymbol)
genes.df$Length<-as.numeric(as.character(genes.df$Length))
genes.df$GeneType<-as.character(genes.df$GeneType)
head(genes.df)
```
# Generation and filtering of dgelist object
```{r}
dgelCRISP <- DGEList(counts = counts, group = tpTreat, genes = genes.df)
keep <- rowSums(cpm(dgelCRISP)>1) >= 3
dgelCRISP <- dgelCRISP[keep, , keep.lib.sizes=FALSE]
dgelCRISP <- calcNormFactors(dgelCRISP)
summary(keep)
dgelCRISP$samples
```
# Genereation of normalized counts
### cpm, log.cpm generation,Zscore transformation
```{r}
d.raw.cpm_d14 <- cpm(dgelCRISP, normalized.lib.sizes = TRUE) #non-log-transformed cpms
d.log.cpm_d14 <- cpm(dgelCRISP, prior.count = 2, log = TRUE) #log-transformed cpms
d.log.rpkm_d14 <- rpkm(dgelCRISP, prior.count = 2, normalized.lib.sizes = TRUE, log = TRUE)
#batch correction
design_plots <- model.matrix(~0+tpTreat) #design for batch removal, only use for plots not for DEG analysis!
d.corr.log.cpm_d14<-removeBatchEffect(d.log.cpm_d14,batch=donor,design=design_plots)
d.corr.log.rpkm_d14<-removeBatchEffect(d.log.rpkm_d14,batch=donor,design=design_plots)
#Zscore transformation of batch corrected log cpms
d.corr.log.cpm_d14.scaled.transposed<-(scale(t(d.corr.log.cpm_d14)))
d.corr.log.cpm_d14.scaled<-data.matrix(t(d.corr.log.cpm_d14.scaled.transposed))
write.table(d.corr.log.cpm_d14,file=file.path(ANALDIR,ANALn,"RNAseq_HSPCs_STAG2_KO_d14_log.cpm.batchcorr.donor.txt"),sep = "\t",col.names=TRUE, quote=FALSE)
write.table(d.corr.log.rpkm_d14,file=file.path(ANALDIR,ANALn,"RNAseq_HSPCs_STAG2_KO_d14_log.rpkm.batchcorr.donor.txt"),sep = "\t",col.names=TRUE, quote=FALSE)
```
# Clustering
## Function for UMAP
```{r}
#set seed for reproducibility
umapfunc<-function(data,labels="",pchsize=rel(8),seedval=42,groupvec=Treatment,secondary=timepoint,NN=15,legpos="right"){
set.seed(seed = seedval)
#appply umap algorithm on transposed data matrix, then extract layout for plotting
umap.dat<-umap::umap(t(as.matrix(data)),n_neighbors=NN)
umap.dat<-data.frame(umap.dat$layout)
umap.dat$group <- factor(groupvec,levels=c("ctrl","SA2_KO"))
umap.dat$timepoint <- as.factor(secondary)
umap.p<-ggplot(data = umap.dat)+
aes(x = X1, y = X2)+
geom_point(size=pchsize, aes(colour=group,shape=timepoint)) +
scale_color_manual(values = c("ctrl" = "firebrick1","SA2_KO" = "steelblue"),
name="Treatment",
labels=c("CTRL-gRNA","STAG2 KO")
) +
scale_shape_manual(values = c("14"=17),
name="timpeoint",) +
geom_text_repel(aes(label=labels),size=4,segment.size=0.2,min.segment.length=0.0,point.padding=.05,segment.alpha=0.5,max.overlaps = 50,force = 50,show.legend = FALSE) +
ggtitle("UMAP RNAseq") + theme_light(base_size=16) +
xlab("UMAP2") +
ylab("UMAP1") +
theme(plot.tag=element_text(size = 12*2.0, face = "bold"),
plot.title = element_text(size = rel(2.4), face = "bold"),
plot.title.position = "panel",
legend.text = element_text(colour="black", size = rel(1.2), face = "plain"),
legend.title = element_text(colour="black", size = rel(1.2), face = "bold"),
legend.box.just = "top",
axis.text = element_text(colour = "black", size = rel(1.5), face = "plain"),
axis.title = element_text(colour = "black",size = rel(2),face = "plain"),
panel.grid = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour="black"),
aspect.ratio = 1.0,
legend.position = legpos
)
plot(umap.p)
}
```
## Function for PCA
```{r}
PCAfunc<-function(data,labels="",groupvec=Treatment,secondaryvec=timepoint){
prin_comp.d <- prcomp(data, scale. = FALSE)
std_dev.d <- prin_comp.d$sdev
pr_var.d <- std_dev.d^2
prop_varex.d <- round(100*pr_var.d/sum(pr_var.d), digits=1)
prop_varex.d
embedding <- as.data.frame(prin_comp.d$rotation)
embedding$group <- as.factor(groupvec)
embedding$timepoint <- as.factor(secondaryvec)
PCA1 <- ggplot(embedding, aes(x=PC1, y=PC2)) +
geom_point(size=6, aes(colour=group,shape=timepoint)) +
scale_color_manual(values = c("ctrl" = "firebrick1","SA2_KO" = "steelblue"),
name="Treatment",
labels=c("CTRL-gRNA","STAG2 KO")
) +
scale_shape_manual(values = c("14"=17),
name="timpoint",) +
geom_text_repel(aes(label=labels),size=4,segment.size=0.2,min.segment.length=0.0,point.padding=.05,segment.alpha=0.5,max.overlaps = 50,force = 50,show.legend = FALSE) +
ggtitle("Principal Component Analysis") + theme_light(base_size=16) +
xlab(paste("PC2: ",prop_varex.d[2],"% of variance")) + ylab(paste("PC1: ",prop_varex.d[1],"% of variance")) +
theme(plot.tag=element_text(size = 12*2.0, face = "bold"),
plot.title = element_text(size = 12, face = "bold"),
plot.title.position = "panel",
legend.text = element_text(colour="black", size = 12, face = "plain"),
legend.title = element_text(colour="black", size = 12, face = "bold"),
legend.box.just = "top",
axis.text = element_text(colour = "black", size = 12, face = "plain"),
axis.title = element_text(colour = "black",size = 12,face = "plain"),
panel.grid = element_blank(),
panel.border = element_rect(colour = "black"),
axis.ticks = element_line(colour="black"),
aspect.ratio = 1.0,
legend.position = "right"
)
}
```
## plot PCA and umap
```{r}
##PCA non-corr counts
pdf(file = file.path(FIGDIR,ANALn,"Clustering","PCA_cpm.HSPCs.SA2KO.d14.pdf"),height = 8,width = 7)
plot(PCAfunc(d.log.cpm_d14,labels=plot_ID))
dev.off()
plot(PCAfunc(d.log.cpm_d14,labels=plot_ID))
##PCA with batch corr counts ("wBC")
pdf(file = file.path(FIGDIR,ANALn,"Clustering","PCA_cpm.wBC.HSPCs.SA2KO.d14.pdf"),height = 8,width = 7)
plot(PCAfunc(d.corr.log.cpm_d14,labels=plot_ID))
dev.off()
plot(PCAfunc(d.corr.log.cpm_d14,labels=plot_ID))
##UMAP with batch corr counts ("wBC")
pdf(file = file.path(FIGDIR,ANALn,"Clustering","UMAP_cpm.wBC.HSPCs.SA2KO.d14.pdf"),height = 8,width = 7)
umapfunc(d.corr.log.cpm_d14,NN=10,legpos="bottom")
dev.off()
umapfunc(d.corr.log.cpm_d14,NN=10,legpos="bottom")
```
# DEG analysis
### Calculate dispersion and fit the model for design
```{r}
#design for DEG analysis incl donor
design_DEGs_d14 <- model.matrix(~0+tpTreat+donor)
#estimate dispersion
dgelCRISP<- estimateDisp(dgelCRISP,design_DEGs_d14,robust = TRUE)
dgelCRISP$common.dispersion #Output: 0.009639036
#Visualize dispersion
pdf(file = file.path(FIGDIR,ANALn,"dipersion.BCV.plot.SA2KOvsCTRL.d14.pdf"),height = 7,width = 10)
plotBCV(dgelCRISP)
dev.off()
#Fitting genewise glms
f8<-glmQLFit(dgelCRISP,design_DEGs_d14)
```
## qlf test
```{r}
#comparison KO vs CTRL
reslist2<-list()
i <- c("d14")
comppair<- paste0(paste0("tpTreat",i,"_SA2_KO-"),paste0("tpTreat",i,"_ctrl"))
reslist2[[paste0("con",i)]]<-makeContrasts(comppair, levels = design_DEGs_d14)
reslist2[[paste0("qlf_",i)]]<-glmQLFTest(f8,contrast = reslist2[[paste0("con",i)]])
reslist2[[paste0("qstat_",i)]]<-topTags(reslist2[[paste0("qlf_",i)]], n = Inf)
sumDEG <- summary(qdt <- decideTestsDGE(reslist2[[paste0("qlf_",i)]]))
write.table(sumDEG, file = file.path(ANALDIR,ANALn,paste0(i,".SA2KOvsCTRL.sumDEG.d14.txt")), sep = "\t", col.names=NA, quote=FALSE)
write.table(reslist2[[paste0("qstat_",i)]], file = file.path(ANALDIR,ANALn,paste0("qstat.",i,".SA2KOvsCTRL.d14.glm.txt")), sep = "\t", col.names=NA, quote=FALSE)
```
### Sorting of qstat results table
```{r}
i <- c("d14")
df<-data.frame(reslist2[[paste0("qstat_",i)]])
reslist2[[paste0("qstat_",i)]]<-df[order(df$FDR, decreasing = FALSE), ]
reslist2[[paste0("DEGs_FC2up.",i)]]<-subset(df,logFC>1 & logCPM >1 & FDR<0.05)
reslist2[[paste0("DEGs_FC2down.",i)]]<-subset(df,logFC<(-1) & FDR <0.05 & logCPM>1)
reslist2[[paste0("DEGs_FC1.5up.",i)]]<-subset(df,logFC>(0.585) & FDR <0.05 & logCPM>1)
reslist2[[paste0("DEGs_FC1.5down.",i)]]<-subset(df,logFC<(-0.585) & FDR <0.05 & logCPM>1)
reslist2[[paste0("DEGs_FC1.5up.nocpmfilt",i)]]<-subset(df,logFC>(0.585) & FDR <0.05)
reslist2[[paste0("DEGs_FC1.5down.nocpmfilt",i)]]<-subset(df,logFC<(-0.585) & FDR <0.05)
##summarize
DEGstats2=data.frame()
i <- c("d14")
DEGstats2["DEGs_FC2up",i]<-nrow(reslist2[[paste0("DEGs_FC2up.",i)]])
DEGstats2["DEGs_FC2down",i]<-nrow(reslist2[[paste0("DEGs_FC2down.",i)]])
DEGstats2["DEGs_FC1.5up",i]<-nrow(reslist2[[paste0("DEGs_FC1.5up.",i)]])
DEGstats2["DEGs_FC1.5down",i]<-nrow(reslist2[[paste0("DEGs_FC1.5down.",i)]])
DEGstats2["DEGs_FC1.5up.nocpmfilt",i]<-nrow(reslist2[[paste0("DEGs_FC1.5up.nocpmfilt",i)]])
DEGstats2["DEGs_FC1.5down.nocpmfilt",i]<-nrow(reslist2[[paste0("DEGs_FC1.5down.nocpmfilt",i)]])
DEGstats2
# d14
#DEGs_FC2up 108
#DEGs_FC2down 313
#DEGs_FC1.5up 399
#DEGs_FC1.5down 738
#DEGs_FC1.5up.nocpmfilt 492
#DEGs_FC1.5down.nocpmfilt 892
```
# volcano plot
```{r}
dir.create(file.path(FIGDIR,ANALn,"Volcanoplots"))
####Sorting of qstat results table and defining colouring categories
i <- c("d14")
#use qstat list to prepare data for volcano plot
#order and filter data by FDR and create new dfs sorted by logFC decreasing or increasing
reslist2[[paste0("qstat_",i,"vs.CTRL.FDR_filt")]]<-filter(reslist2[[paste0("qstat_",i)]],(logFC>(1)| logFC<(-1))& FDR <0.05)
reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCdec_FDR_filt")]]<-reslist2[[paste0("qstat_",i,"vs.CTRL.FDR_filt")]][order(reslist2[[paste0("qstat_",i,"vs.CTRL.FDR_filt")]]$logFC, decreasing = TRUE), ]
reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCinc_FDR_filt")]]<-reslist2[[paste0("qstat_",i,"vs.CTRL.FDR_filt")]][order(reslist2[[paste0("qstat_",i,"vs.CTRL.FDR_filt")]]$logFC, decreasing = FALSE), ]
#assign up / down / not sig categories in new column
reslist2[[paste0("qstat_",i)]]$Volccolor<- "NA"
reslist2[[paste0("qstat_",i)]]$Volccolor[reslist2[[paste0("qstat_",i)]]$logFC < -0.585] <- "down"
reslist2[[paste0("qstat_",i)]]$Volccolor[reslist2[[paste0("qstat_",i)]]$logFC > 0.585] <- "up"
reslist2[[paste0("qstat_",i)]]$Volccolor[reslist2[[paste0("qstat_",i)]]$Volccolor=="NA"] <- "notsig"
reslist2[[paste0("qstat_",i)]]$Volccolor[reslist2[[paste0("qstat_",i)]]$FDR>0.05] <- "notsig"
#add desired colors for upregulated genes depending on KD to list
reslist2[["UPcolor.d14vs.CTRL"]]<-c("aquamarine4")
pdf(file = file.path(FIGDIR,ANALn,"Volcanoplots",paste0("Volcano_",i,"KO.vs.CTRL.topGenes.pdf")), width = 6, height = 6)
ggplot()+
geom_point(data=reslist2[[paste0("qstat_",i)]], aes(x=logFC, y=-log10(FDR), colour=Volccolor)) +
scale_color_manual(values = c("notsig" = "darkgrey", "up" = reslist2[[paste0("UPcolor.",i,"vs.CTRL")]], "down" = "firebrick1")) +
ggtitle(paste0(i," SA2 KO vs. CTRL-HSPCs (d14)")) +
xlab("log2 fold change") +
ylab("-log10 FDR") +
#scale_x_continuous(limits = c(-4,4)) +
#scale_y_continuous(limits = c(0,6))+
theme(legend.position = "none",
plot.background = element_rect(fill="white",colour = "white",linetype = 3),
panel.background = element_rect(fill = "white",color = "black"),
panel.border = element_rect(fill = NA, colour = "black",size=2),
panel.grid.major = element_line(size = 0.5, linetype = 'solid',colour = NULL),
panel.grid.minor = element_line(size = 0.25, linetype = 'dashed',colour = NULL),
plot.title = element_text(size = rel(2.4), hjust = 0.5),axis.text = element_text(colour = "black", size = rel(1.5), face = "plain"),
axis.title = element_text(size = rel(2)))+
geom_text_repel(aes(x = reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCinc_FDR_filt")]]$logFC[1:10], y = -log10(reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCinc_FDR_filt")]]$FDR[1:10])), data = head(reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCinc_FDR_filt")]], 10), label = reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCinc_FDR_filt")]]$GeneSymbol[1:10],cex=5,max.overlaps=30,min.segment.length=0) +
geom_text_repel(aes(x = reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCdec_FDR_filt")]]$logFC[1:10], y = -log10(reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCdec_FDR_filt")]]$FDR[1:10])), data = head(reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCdec_FDR_filt")]], 10), label = reslist2[[paste0("qstat_",i,"vs.CTRL_ordered_FCdec_FDR_filt")]]$GeneSymbol[1:10],cex=5,max.overlaps=30,min.segment.length=0) +
geom_text_repel(aes(x = reslist2[[paste0("qstat_",i)]]$logFC[1:10], y = -log10(reslist2[[paste0("qstat_",i)]]$FDR[1:10])), data = head(reslist2[[paste0("qstat_",i)]], 10), label = reslist2[[paste0("qstat_",i)]]$GeneSymbol[1:10],cex=5,max.overlaps=30,min.segment.length=0) +
geom_vline(xintercept = -0.585, linetype = 'dashed') + geom_vline(xintercept = 0.585,linetype = 'dashed') +
geom_hline(yintercept = -log10(0.05),linetype = 'dashed')
dev.off()
```
# GSEA fry: Cohesin mut AML signaure genes
## reading and filtering of input genelists for GSEA analyses
```{r}
########Read
#SA2mut AML specific (SA2mut vs CTRL AMLs)
listSA2mut2<-read.table(file.path(ANALDIRAML,"STAG2pat_vs_CTRL/qstat_STAG2.vs.CTRL.glm.txt"), header=T, sep="\t",row.names=1)
#RAD21mut AML specific (RAD21mut vs CTRL AMLs)
listRAD21mut2<-read.table(file.path(ANALDIRAML,"RAD21pat_vs_CTRL/qstat_RAD21.vs.CTRL.glm.txt"), header=T, sep="\t",row.names=1)
########Filter
##subset SA2 AML
genelist_SA2mut_UP2 <- subset(listSA2mut2,(logFC > .585 & FDR < 0.05 & logCPM > 1)) #439
genelist_SA2mut_DOWN2 <- subset(listSA2mut2,(logFC < -.585 & FDR < 0.05 & logCPM > 1)) #212
##subset RAD21 AML (less stringent criteria)
genelist_RAD21mut_UP2 <- subset(listRAD21mut2,(logFC > .385 & FDR < 0.05)) #65
genelist_RAD21mut_DOWN2 <- subset(listRAD21mut2,(logFC < -.385 & FDR < 0.05)) #12
```
## set indices for genesets
```{r}
#SA2mut AML specific (SA2mut vs CTRL AMLs)
###subset SA2 AML
indSA2mut_UP2 <- rownames(f8) %in% rownames(genelist_SA2mut_UP2)
indSA2mut_DOWN2 <- rownames(f8) %in% rownames(genelist_SA2mut_DOWN2)
indSA2mut<-list(indSA2mut_UP2,indSA2mut_DOWN2)
names(indSA2mut) <- c("SA2mut_up","SA2mut_down")
#RAD21mut AML specific (RAD21mut vs CTRL AMLs)
###subset RAD21 AML
indRAD21mut_UP2 <- rownames(f8) %in% rownames(genelist_RAD21mut_UP2)
indRAD21mut_DOWN2 <- rownames(f8) %in% rownames(genelist_RAD21mut_DOWN2)
indRAD21mut<-list(indRAD21mut_UP2,indRAD21mut_DOWN2)
names(indRAD21mut) <- c("RAD21mut_up","RAD21mut_down")
```
## use limma fry on indices
```{r}
###fry and save in list
selfdef_sigs<-list(indSA2mut,indRAD21mut)
names(selfdef_sigs)<-c("SA2mut","RAD21mut")
GSEAlist_SA2KO<-list()
for (sig in names(selfdef_sigs)){
GSEAlist_SA2KO[[paste0("SA2KOd14",sig)]]<- fry(dgelCRISP, index=selfdef_sigs[[sig]], design=design_DEGs_d14, contrast=reslist2[["cond14"]])
}
```
## visualize SA2mut signature in barcodplot
```{r}
resd14<-reslist2[["qlf_d14"]]
frSA2KO_SA2mut_d14<-GSEAlist_SA2KO[[paste0("SA2KOd14","SA2mut")]]
pdf(file=file.path(FIGDIR,ANALn,"GSEA","GSEA_SA2mutAMLsignature_SA2KOd14.pdf"),width=4,height=5)
barcodeplot(resd14$table$logFC,
index=indSA2mut_UP2,
index2=indSA2mut_DOWN2,
labels=c("CTRLd14","SA2KOd14"),
xlab = bquote(log[2]*"FC in RNAseq"),
main="SA2KO d14: expression of SA2mut AML specific genes",
col.bars=c("aquamarine4", "brown4"))
par(new=TRUE)
plot.new( )
plot.window( xlim=c(-5,5), ylim=c(-5,5) )
text(2.5,5,bquote('green bars: genes upregulated in SA2mut AML '~'('*.(frSA2KO_SA2mut_d14["UpSA2mut","NGenes"])*')'), adj = c(1,.5),cex=0.6)
text(0.5,4.5,bquote(italic(P)[adj.]*"<"*.(frSA2KO_SA2mut_d14["UpSA2mut","FDR"])*'('*.(frSA2KO_SA2mut_d14["UpSA2mut","Direction"])*')'), adj = c(1,.5),cex=1)
text(-3,-5,bquote('red bars: genes downregulated in SA2mut AML '~'('*.(frSA2KO_SA2mut_d14["DownSA2mut","NGenes"])*')'), adj = c(0,.5),cex=0.6)
text(-2,-4.5,bquote(italic(P)[adj.]*"<"*.(frSA2KO_SA2mut_d14["DownSA2mut","FDR"])*'('*.(frSA2KO_SA2mut_d14["DownSA2mut","Direction"])*')'), adj = c(0,.5),cex=1)
dev.off()
```