forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalexnet-dorefa.py
executable file
·233 lines (193 loc) · 7.72 KB
/
alexnet-dorefa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: alexnet-dorefa.py
# Author: Yuxin Wu, Yuheng Zou ({wyx,zyh}@megvii.com)
import argparse
import numpy as np
import os
import sys
import cv2
import tensorflow as tf
from tensorpack import *
from tensorpack.dataflow import dataset
from tensorpack.tfutils.sessinit import SmartInit
from tensorpack.tfutils.summary import add_param_summary
from tensorpack.tfutils.varreplace import remap_variables
from tensorpack.utils.gpu import get_num_gpu
from dorefa import get_dorefa, ternarize
from imagenet_utils import ImageNetModel, eval_classification, fbresnet_augmentor, get_imagenet_dataflow
"""
This is a tensorpack script for the ImageNet results in paper:
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
http://arxiv.org/abs/1606.06160
The original experiements are performed on a proprietary framework.
This is our attempt to reproduce it on tensorpack & TensorFlow.
To Train:
./alexnet-dorefa.py --dorefa 1,2,6 --data PATH --gpu 0,1
PATH should look like:
PATH/
train/
n02134418/
n02134418_198.JPEG
...
...
val/
ILSVRC2012_val_00000001.JPEG
...
And you'll need the following to be able to fetch data efficiently
Fast disk random access (Not necessarily SSD. I used a RAID of HDD, but not sure if plain HDD is enough)
More than 20 CPU cores (for data processing)
More than 10G of free memory
On 8 P100s and dorefa==1,2,6, the training should take about 30 minutes per epoch.
To run pretrained model:
./alexnet-dorefa.py --load alexnet-126.npz --run a.jpg --dorefa 1,2,6
"""
BITW = 1
BITA = 2
BITG = 6
TOTAL_BATCH_SIZE = 256
BATCH_SIZE = None
class Model(ImageNetModel):
weight_decay = 5e-6
weight_decay_pattern = 'fc.*/W'
def get_logits(self, image):
if BITW == 't':
fw, fa, fg = get_dorefa(32, 32, 32)
fw = ternarize
else:
fw, fa, fg = get_dorefa(BITW, BITA, BITG)
# monkey-patch tf.get_variable to apply fw
def new_get_variable(v):
name = v.op.name
# don't binarize first and last layer
if not name.endswith('W') or 'conv0' in name or 'fct' in name:
return v
else:
logger.info("Quantizing weight {}".format(v.op.name))
return fw(v)
def nonlin(x):
if BITA == 32:
return tf.nn.relu(x) # still use relu for 32bit cases
return tf.clip_by_value(x, 0.0, 1.0)
def activate(x):
return fa(nonlin(x))
with remap_variables(new_get_variable), \
argscope([Conv2D, BatchNorm, MaxPooling], data_format='channels_first'), \
argscope(BatchNorm, momentum=0.9, epsilon=1e-4), \
argscope(Conv2D, use_bias=False):
logits = (LinearWrap(image)
.Conv2D('conv0', 96, 12, strides=4, padding='VALID', use_bias=True)
.apply(activate)
.Conv2D('conv1', 256, 5, padding='SAME', split=2)
.apply(fg)
.BatchNorm('bn1')
.MaxPooling('pool1', 3, 2, padding='SAME')
.apply(activate)
.Conv2D('conv2', 384, 3)
.apply(fg)
.BatchNorm('bn2')
.MaxPooling('pool2', 3, 2, padding='SAME')
.apply(activate)
.Conv2D('conv3', 384, 3, split=2)
.apply(fg)
.BatchNorm('bn3')
.apply(activate)
.Conv2D('conv4', 256, 3, split=2)
.apply(fg)
.BatchNorm('bn4')
.MaxPooling('pool4', 3, 2, padding='VALID')
.apply(activate)
.FullyConnected('fc0', 4096)
.apply(fg)
.BatchNorm('bnfc0')
.apply(activate)
.FullyConnected('fc1', 4096, use_bias=False)
.apply(fg)
.BatchNorm('bnfc1')
.apply(nonlin)
.FullyConnected('fct', 1000, use_bias=True)())
add_param_summary(('.*/W', ['histogram', 'rms']))
tf.nn.softmax(logits, name='output') # for prediction
return logits
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=2e-4, trainable=False)
return tf.train.AdamOptimizer(lr, epsilon=1e-5)
def get_data(dataset_name):
isTrain = dataset_name == 'train'
augmentors = fbresnet_augmentor(isTrain)
return get_imagenet_dataflow(
args.data, dataset_name, BATCH_SIZE, augmentors)
def get_config():
data_train = get_data('train')
data_test = get_data('val')
return TrainConfig(
dataflow=data_train,
callbacks=[
ModelSaver(),
ScheduledHyperParamSetter(
'learning_rate', [(60, 4e-5), (75, 8e-6)]),
InferenceRunner(data_test,
[ClassificationError('wrong-top1', 'val-error-top1'),
ClassificationError('wrong-top5', 'val-error-top5')])
],
model=Model(),
steps_per_epoch=1280000 // TOTAL_BATCH_SIZE,
max_epoch=90,
)
def run_image(model, sess_init, inputs):
pred_config = PredictConfig(
model=model,
session_init=sess_init,
input_names=['input'],
output_names=['output']
)
predictor = OfflinePredictor(pred_config)
meta = dataset.ILSVRCMeta()
words = meta.get_synset_words_1000()
transformers = imgaug.AugmentorList(fbresnet_augmentor(isTrain=False))
for f in inputs:
assert os.path.isfile(f), f
img = cv2.imread(f).astype('float32')
assert img is not None
img = transformers.augment(img)[np.newaxis, :, :, :]
outputs = predictor(img)[0]
prob = outputs[0]
ret = prob.argsort()[-10:][::-1]
names = [words[i] for i in ret]
print(f + ":")
print(list(zip(names, prob[ret])))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='the physical ids of GPUs to use')
parser.add_argument('--load', help='load a checkpoint, or a npz (given as the pretrained model)')
parser.add_argument('--data', help='ILSVRC dataset dir')
parser.add_argument('--dorefa', required=True,
help='number of bits for W,A,G, separated by comma. W="t" means TTQ')
parser.add_argument('--run', help='run on a list of images with the pretrained model', nargs='*')
parser.add_argument('--eval', action='store_true')
args = parser.parse_args()
dorefa = args.dorefa.split(',')
if dorefa[0] == 't':
assert dorefa[1] == '32' and dorefa[2] == '32'
BITW, BITA, BITG = 't', 32, 32
else:
BITW, BITA, BITG = map(int, dorefa)
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.run:
assert args.load.endswith('.npz')
run_image(Model(), SmartInit(args.load), args.run)
sys.exit()
if args.eval:
BATCH_SIZE = 128
ds = get_data('val')
eval_classification(Model(), SmartInit(args.load), ds)
sys.exit()
nr_tower = max(get_num_gpu(), 1)
BATCH_SIZE = TOTAL_BATCH_SIZE // nr_tower
logger.set_logger_dir(os.path.join(
'train_log', 'alexnet-dorefa-{}'.format(args.dorefa)))
logger.info("Batch per tower: {}".format(BATCH_SIZE))
config = get_config()
config.session_init = SmartInit(args.load)
launch_train_with_config(config, SyncMultiGPUTrainerReplicated(nr_tower))