-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPySpatialAnalysis_StreamlitApp.py
executable file
·393 lines (253 loc) · 13.9 KB
/
PySpatialAnalysis_StreamlitApp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!/usr/bin/env python3
# encoding: utf-8
#
# Copyright (C) 2022 Max Planck Institute for Multidisclplinary Sciences
# Copyright (C) 2022 University Medical Center Goettingen
# Copyright (C) 2022 Ajinkya Kulkarni <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
##########################################################################
import streamlit as st
import numpy as np
from io import BytesIO
from skimage import measure
import pandas as pd
import networkx as nx
from matplotlib.lines import Line2D
from matplotlib.colors import ListedColormap
import matplotlib
from scipy.spatial import voronoi_plot_2d
import time
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 20})
import sys
# Don't generate the __pycache__ folder locally
sys.dont_write_bytecode = True
# Print exception without the buit-in python warning
sys.tracebacklimit = 0
##########################################################################
from modules import *
##########################################################################
allowed_image_size = 2000 # Only images with sizes less than 2000x2000 allowed
##########################################################################
# Open the logo file in binary mode and read its contents into memory
with open("logo.jpg", "rb") as f:
image_data = f.read()
# Create a BytesIO object from the image data
image_bytes = BytesIO(image_data)
# Configure the page settings using the "set_page_config" method of Streamlit
st.set_page_config(
page_title='PySpatialHistologyAnalysis',
page_icon=image_bytes, # Use the logo image as the page icon
layout="centered",
initial_sidebar_state="expanded",
menu_items={
'Get help': 'mailto:[email protected]',
'Report a bug': 'mailto:[email protected]',
'About': 'This is an application for demonstrating the PySpatialHistologyAnalysis package. Developed, tested, and maintained by Ajinkya Kulkarni: https://github.com/ajinkya-kulkarni at the MPI-NAT, Goettingen.'
}
)
##########################################################################
# Set the title of the web app
st.title(':blue[Spatial analysis of Histopathology images]')
st.caption('Application screenshots and source code available [here](https://github.com/ajinkya-kulkarni/PySpatialHistologyAnalysis). Sample image to test this application is available [here](https://drive.google.com/file/d/1fwGMRYZndTDrJltNp9Ywy_jWiXt98VdJ/view?usp=sharing).', unsafe_allow_html = False)
# Add some vertical space between the title and the next section
st.markdown("")
##########################################################################
# Create a form using the "form" method of Streamlit
with st.form(key = 'form1', clear_on_submit = True):
# Add some text explaining what the user should do next
st.markdown(':blue[Upload an H&E image/slide to be analyzed. Works best for images/slides smaller than 2000x2000 pixels]')
# Add a file uploader to allow the user to upload an image file
uploaded_file = st.file_uploader("Upload a file", type = ["tif", "tiff", "png", "jpg", "jpeg"], accept_multiple_files = False, label_visibility = 'collapsed')
######################################################################
st.markdown("")
left_column, middle_column, right_column = st.columns(3)
with left_column:
st.slider('Threshold (σ) for Nuclei detection. Higher value detects lesser Nuclei.', min_value = 0.1, max_value = 0.9, value = 0.5, step = 0.1, format = '%0.1f', label_visibility = "visible", key = '-SensitivityKey-')
ModelSensitivity = round(float(st.session_state['-SensitivityKey-']), 2)
with middle_column:
st.number_input('Number of classes for Area, between 1 and 10.', key = '-n_clusters_area_key-', min_value = 1, max_value = 10, value = 3, step = 1, format = '%d')
area_cluster_number = int(st.session_state['-n_clusters_area_key-'])
with right_column:
st.number_input('Number of classes for Roundness, between 1 and 10.', key = '-n_clusters_roundness_key-', min_value = 1, max_value = 10, value = 3, step = 1, format = '%d')
roundness_cluster_number= int(st.session_state['-n_clusters_roundness_key-'])
st.markdown("")
######################################################################
# Add a submit button to the form
submitted = st.form_submit_button('Analyze')
######################################################################
# If no file was uploaded, stop processing and exit early
if uploaded_file is None:
st.stop()
######################################################################
if submitted:
ProgressBarText = st.empty()
ProgressBarText.caption("Analyzing uploaded image...")
ProgressBar = st.progress(0)
ProgressBarTime = 0.1
# Read in the RGB image from an uploaded file
rgb_image = read_image(uploaded_file)
if rgb_image.shape[0] > allowed_image_size or rgb_image.shape[1] > allowed_image_size:
st.error('Uploaded image exceeds the allowed image size. Please reduce the image size.')
st.stop()
time.sleep(ProgressBarTime)
ProgressBar.progress(float(1/7))
##########################################################
# Normalize staining
stain_normalized_rgb_image = normalize_staining(rgb_image)
##########################################################
# perform_analysis_image = stain_normalized_rgb_image
perform_analysis_image = rgb_image
##########################################################
# Perform instance segmentation analysis on the RGB image to obtain the labels
# and detailed information about each label
labelled_image, detailed_info = perform_analysis(perform_analysis_image, ModelSensitivity)
time.sleep(ProgressBarTime)
ProgressBar.progress(float(2/7))
##########################################################
# Make RGB image from labels image
modified_labels_rgb_image = colorize_labels(labelled_image)
time.sleep(ProgressBarTime)
ProgressBar.progress(float(3/7))
##############################################################
# Check that each label is a unique integer
unique_labels = np.unique(labelled_image)
num_labels = len(unique_labels) - 1 # subtract 1 to exclude the background label
if num_labels != labelled_image.max():
raise Exception('Each blob does not have a unique integer assigned to it.')
##############################################################
# Compute the region properties for each label in the label image
# using a function called "measure.regionprops_table"
# The properties computed include area, centroid, label, and orientation
label_properties = measure.regionprops_table(labelled_image, intensity_image=perform_analysis_image, properties=('area', 'axis_major_length', 'axis_minor_length', 'centroid', 'label', 'orientation'))
# Create a Pandas DataFrame to store the region properties
dataframe = pd.DataFrame(label_properties)
axis_major_length = label_properties['axis_major_length']
axis_minor_length = label_properties['axis_minor_length']
roundness = (axis_minor_length / axis_major_length)
dataframe['Roundness'] = roundness
time.sleep(ProgressBarTime)
ProgressBar.progress(float(4/7))
##############################################################
## Calculate local nuclei density
Local_Density_mean_filter = mean_filter(labelled_image)
Local_Density_mean_filter = normalize_density_maps(Local_Density_mean_filter)
time.sleep(ProgressBarTime)
ProgressBar.progress(float(5/7))
######
Local_Density_KDE = weighted_kde_density_map(labelled_image, num_points = 1000)
Local_Density_KDE = normalize_density_maps(Local_Density_KDE)
time.sleep(ProgressBarTime)
ProgressBar.progress(float(6/7))
##############################################################
## Perform binning of data into clusters
label_list = list(dataframe['label'])
area_cluster_labels = bin_property_values(labelled_image, list(dataframe['area']), area_cluster_number)
roundness_cluster_labels = bin_property_values(labelled_image, list(dataframe['Roundness']), roundness_cluster_number)
time.sleep(ProgressBarTime)
ProgressBar.progress(float(7/7))
ProgressBarText.empty()
ProgressBar.empty()
##############################################################
st.markdown("""---""")
st.markdown("Results")
##############################################################
## Generate visualizations of the uploaded RGB image and the results of the instance segmentation analysis
## using a function called "make_plots"
# result_figure = make_first_plot(rgb_image, stain_normalized_rgb_image)
# ## Display the figure using Streamlit's "st.pyplot" function
# st.pyplot(result_figure)
image_comparison(img1=rgb_image, img2=stain_normalized_rgb_image, label1="Uploaded H&E image", label2="Stain normalized H&E image")
st.markdown("""---""")
##############################################################
# Compare the uploaded RGB image with the modified label image
# using a function called "image_comparison"
# Set parameters for image width, in-memory display, and responsiveness
image_comparison(img1=perform_analysis_image, img2=modified_labels_rgb_image, label1="Uploaded H&E image", label2="Segmented H&E image")
st.markdown("""---""")
##############################################################
## Generate visualizations of the uploaded RGB image and the results of the instance segmentation analysis
## using a function called "make_plots"
result_figure = make_second_plot(perform_analysis_image, ModelSensitivity, modified_labels_rgb_image, detailed_info, Local_Density_mean_filter, Local_Density_KDE, area_cluster_labels, area_cluster_number, roundness_cluster_labels, roundness_cluster_number)
## Display the figure using Streamlit's "st.pyplot" function
st.pyplot(result_figure)
# # Save the figure to a file
# save_filename = 'Result_' + uploaded_file.name[:-4] + '.png'
# result_figure.savefig(save_filename, bbox_inches='tight')
# # Close the figure
# plt.close(result_figure)
##################################################################
# Call the make_graph function to get the graph and node labels
distance_threshold = 50
graph, labels = make_weighted_network_connectivity_graph(labelled_image, distance_threshold)
# graph, labels = make_network_connectivity_graph(labelled_image, distance_threshold)
# Compute Voronoi tessellation of the labelled image
vor = voronoi_tessellation(labelled_image)
##################################################################
st.markdown("""---""")
st.markdown("Voronoi Tesselation, indicating Nuclei packing")
fig, ax = plt.subplots()
# Add the labels image with transparency
plt.imshow(np.flipud(perform_analysis_image), alpha = 0.5)
# Find the limits of the image
ymax, xmax = labelled_image.shape
# Plot the Voronoi diagram
voronoi_plot_2d(vor, ax=ax, show_vertices = False, line_colors = 'k', show_points = False, line_width = 0.5)
# Set the limits of the plot to match the original image
ax.set_xlim([0, xmax])
ax.set_ylim([0, ymax])
ax.set_xticks([])
ax.set_yticks([])
st.pyplot(fig)
##################################################################
st.markdown("""---""")
st.markdown("Nuclei connectivity graph, indicating similar spaced Nuclei clusters")
# Define node colors
unique_labels = np.unique(labels)
num_colors = len(unique_labels)
base_cmap = matplotlib.colormaps['Set1']
cmap = ListedColormap(base_cmap(np.linspace(0, 1, num_colors)))
node_colors = {label: cmap(i) for i, label in enumerate(unique_labels)}
# Create a figure and axis
fig, ax = plt.subplots()
# Draw the graph
pos = nx.get_node_attributes(graph, 'pos')
nx.draw_networkx_nodes(graph, pos, node_color=[node_colors[label] for label in labels], node_size = 2, ax = ax)
nx.draw_networkx_edges(graph, pos, edge_color='gray', width = 0.2, ax=ax)
# Add the labels image with transparency
plt.imshow(perform_analysis_image, alpha=0.5)
st.pyplot(fig)
##################################################################
st.markdown("""---""")
# Define a mapping of the old column names to the new column names
column_mapping = {'area': 'Region Area', 'centroid-0': 'Region Centroid-0', 'centroid-1': 'Region Centroid-1', 'equivalent_diameter': 'Equivalent Diameter', 'orientation': 'Orientation', 'label': 'Label #'}
# Rename the columns of the DataFrame using the mapping
renamed_dataframe = dataframe.rename(columns=column_mapping)
# Remove the 'Region Centroid-0' and 'Region Centroid-1' columns from the DataFrame
renamed_dataframe = renamed_dataframe.drop(columns=['Region Centroid-0', 'Region Centroid-1'])
renamed_dataframe = renamed_dataframe.drop(columns=['axis_major_length', 'axis_minor_length'])
# Move the 'Label #' column to the beginning of the DataFrame
cols = list(renamed_dataframe.columns)
cols.pop(cols.index('Label #'))
renamed_dataframe = renamed_dataframe[['Label #'] + cols]
# Convert the 'Orientation' column from radians to degrees and shift by 90 degrees using the "apply" method
renamed_dataframe['Orientation'] = np.rad2deg(renamed_dataframe['Orientation']).add(90)
# Display the detailed report
st.markdown("Detailed Report")
# Show the dataframe
st.dataframe(renamed_dataframe, use_container_width = True)
##################################################################
st.stop()
##########################################################################