forked from MichaelFan01/STDC-Seg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform.py
120 lines (95 loc) · 3.63 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/python
# -*- encoding: utf-8 -*-
from PIL import Image
import PIL.ImageEnhance as ImageEnhance
import random
import numpy as np
class RandomCrop(object):
def __init__(self, size, *args, **kwargs):
self.size = size
def __call__(self, im_lb):
im = im_lb['im']
lb = im_lb['lb']
assert im.size == lb.size
W, H = self.size
w, h = im.size
if (W, H) == (w, h): return dict(im=im, lb=lb)
if w < W or h < H:
scale = float(W) / w if w < h else float(H) / h
w, h = int(scale * w + 1), int(scale * h + 1)
im = im.resize((w, h), Image.BILINEAR)
lb = lb.resize((w, h), Image.NEAREST)
sw, sh = random.random() * (w - W), random.random() * (h - H)
crop = int(sw), int(sh), int(sw) + W, int(sh) + H
return dict(
im = im.crop(crop),
lb = lb.crop(crop)
)
class HorizontalFlip(object):
def __init__(self, p=0.5, *args, **kwargs):
self.p = p
def __call__(self, im_lb):
if random.random() > self.p:
return im_lb
else:
im = im_lb['im']
lb = im_lb['lb']
return dict(im = im.transpose(Image.FLIP_LEFT_RIGHT),
lb = lb.transpose(Image.FLIP_LEFT_RIGHT),
)
class RandomScale(object):
def __init__(self, scales=(1, ), *args, **kwargs):
self.scales = scales
# print('scales: ', scales)
def __call__(self, im_lb):
im = im_lb['im']
lb = im_lb['lb']
W, H = im.size
scale = random.choice(self.scales)
# scale = np.random.uniform(min(self.scales), max(self.scales))
w, h = int(W * scale), int(H * scale)
return dict(im = im.resize((w, h), Image.BILINEAR),
lb = lb.resize((w, h), Image.NEAREST),
)
class ColorJitter(object):
def __init__(self, brightness=None, contrast=None, saturation=None, *args, **kwargs):
if not brightness is None and brightness>0:
self.brightness = [max(1-brightness, 0), 1+brightness]
if not contrast is None and contrast>0:
self.contrast = [max(1-contrast, 0), 1+contrast]
if not saturation is None and saturation>0:
self.saturation = [max(1-saturation, 0), 1+saturation]
def __call__(self, im_lb):
im = im_lb['im']
lb = im_lb['lb']
r_brightness = random.uniform(self.brightness[0], self.brightness[1])
r_contrast = random.uniform(self.contrast[0], self.contrast[1])
r_saturation = random.uniform(self.saturation[0], self.saturation[1])
im = ImageEnhance.Brightness(im).enhance(r_brightness)
im = ImageEnhance.Contrast(im).enhance(r_contrast)
im = ImageEnhance.Color(im).enhance(r_saturation)
return dict(im = im,
lb = lb,
)
class MultiScale(object):
def __init__(self, scales):
self.scales = scales
def __call__(self, img):
W, H = img.size
sizes = [(int(W*ratio), int(H*ratio)) for ratio in self.scales]
imgs = []
[imgs.append(img.resize(size, Image.BILINEAR)) for size in sizes]
return imgs
class Compose(object):
def __init__(self, do_list):
self.do_list = do_list
def __call__(self, im_lb):
for comp in self.do_list:
im_lb = comp(im_lb)
return im_lb
if __name__ == '__main__':
flip = HorizontalFlip(p = 1)
crop = RandomCrop((321, 321))
rscales = RandomScale((0.75, 1.0, 1.5, 1.75, 2.0))
img = Image.open('data/img.jpg')
lb = Image.open('data/label.png')