forked from citrusvanilla/multiplewavetracking_py
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmwt_detection.py
160 lines (123 loc) · 4.59 KB
/
mwt_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
##
## Near-shore Wave Tracking
## mwt_detection.py
##
## Created by Justin Fung on 9/1/17.
## Copyright 2017 justin fung. All rights reserved.
##
## ========================================================
"""Routine for detecting potential waves.
Method for detecting is:
-1. detect contours
-2. filter contours
-3. create list of wave objects from filtered contours
"""
from __future__ import division
import math
import cv2
from mwt_objects import Section
# Boolean flag to filter blobs by area:
FLAGS_FILTER_BY_AREA = True
# Boolean flag to filter blobs by inertia (shape):
FLAGS_FILTER_BY_INERTIA = True
# Minimum area threshold for contour:
MINIMUM_AREA = 100
# Maximum area threshold for contour:
MAXIMUM_AREA = 1e7
# Minimum inertia threshold for contour:
MINIMUM_INERTIA_RATIO = 0.0
# Maximum inertia threshold for contour:
MAXIMUM_INERTIA_RATIO = 0.1
def find_contours(frame):
"""Contour finding function utilizing OpenCV.
Args:
frame: A frame from a cv2.video_reader object to process.
Returns:
contours: An array of contours, each represented by an array of
points.
"""
contours, hierarchy = cv2.findContours(
image=frame,
mode=cv2.RETR_EXTERNAL,
method=cv2.CHAIN_APPROX_NONE,
hierarchy=None,
offset=None)
return contours
def keep_contour(contour,
area=FLAGS_FILTER_BY_AREA,
inertia=FLAGS_FILTER_BY_INERTIA,
min_area=MINIMUM_AREA,
max_area=MAXIMUM_AREA,
min_inertia_ratio=MINIMUM_INERTIA_RATIO,
max_inertia_ratio=MAXIMUM_INERTIA_RATIO):
"""Contour filtering function utilizing OpenCV. In our case,
we are looking for oblong shapes that exceed a user-defined area.
Args:
contour: A contour from an array of contours
area: boolean flag to filter contour by area
inertia: boolean flag to filter contour by inertia
min_area: minimum area threshold for contour
max_area: maximum area threshold for contour
min_inertia_ratio: minimum inertia threshold for contour
max_inertia_ratio: maximum inertia threshold for contour
Returns:
ret: A boolean TRUE if contour meets conditions, else FALSE
"""
# Initialize the return value.
ret = True
# Obtain contour moments.
moments = cv2.moments(contour)
# Filter Contours By Area.
if area is True and ret is True:
area = cv2.contourArea(contour)
if area < min_area or area >= max_area:
ret = False
# Filter contours by inertia.
if inertia is True and ret is True:
denominator = math.sqrt((2*moments['m11'])**2
+ (moments['m20']-moments['m02'])**2)
epsilon = 0.01
ratio = 0.0
if denominator > epsilon:
cosmin = (moments['m20']-moments['m02']) / denominator
sinmin = 2*moments['m11'] / denominator
cosmax = -cosmin
sinmax = -sinmin
imin = (0.5*(moments['m20']+moments['m02'])
- 0.5*(moments['m20']-moments['m02'])*cosmin
- moments['m11']*sinmin)
imax = (0.5*(moments['m20']+moments['m02'])
- 0.5*(moments['m20']-moments['m02'])*cosmax
- moments['m11']*sinmax)
ratio = imin / imax
else:
ratio = 1
if ratio < min_inertia_ratio or ratio >= max_inertia_ratio:
ret = False
#center.confidence = ratio * ratio;
return ret
## ========================================================
def detect_sections(frame, frame_number):
"""Finds sections that meet the user-defined criteria.
Args:
frame: a frame from a cv2.video_reader object
frame_number: number of the frame in the video sequence
Returns:
sections: a list of Section objects
"""
# Convert to single channel for blob detection if necessary.
if len(frame.shape) > 2:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Initiate and empty list of sections.
sections = []
# 1. Find the contours.
contours = find_contours(frame)
# 2. Filter the contours.
for contour in contours:
if keep_contour(contour) is False:
continue
# If contour passes thresholds, convert it to a Section.
section = Section(points=contour, birth=frame_number)
# 3. Add the section to sections list.
sections.append(section)
return sections