Skip to content

Latest commit

 

History

History
40 lines (33 loc) · 1.46 KB

README.md

File metadata and controls

40 lines (33 loc) · 1.46 KB

FPGA4HEP-Brevitas

Jet Classification and Regression training in Brevitas, using quantized weights and activations.

Layers Quantization Average AUC%
64fc, 32fc, 32fc 16-bit weights and activations 93.9
64fc, 32fc, 32fc 4-bit weights and activations 92.46
64fc, 32fc, 32fc 2-bit weights and activatinos 89.26
64fc, 32fc, 32fc 1-bit weights and activations 81.94

Data

Place the file below in /path/to/FPGA4HEP-Brevitas/data/

https://cernbox.cern.ch/index.php/s/jvFd5MoWhGs1l5v

Training and evaluation

For training or testing:

python main.py  [--batch-size      batchsize     (int)   ]  \
                [--test-batch-size testbatchsize (int)   ]  \
                [--epochs          epochs        (int)   ]  \ 
                [--lr              lr            (float) ]  \
                [--momentum        momentum      (float) ]  \
                [--seed            seed          (int)   ]  \
                [--log-interval    loginterval   (int)   ]  \
                [--cuda            cuda          (bool)  ]  \
                [--name            name          (string)]  \
                [--test            test          (bool)  ]

Requirements

  1. Python3
  2. PyTorch
  3. Brevitas
  4. Matplotlib>3.1.1 (For correct plotting of Confusion Matrix)
  5. Pandas
  6. scikit-learn
  7. yaml