-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_cnn.py
694 lines (551 loc) · 35.5 KB
/
text_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
import os
import numpy as np
import tensorflow as tf
from base_model import Model
from params_init import random_uniform_initializer, random_normal_initializer, xavier_initializer, \
random_truncated_normal_initializer
from utils.general_utils import Progbar
from utils.general_utils import get_minibatches, print_confusion_matrix, write_wrong_predictions, get_weighted_f1_score
from utils.feature_extraction import DataConfig
class TextCNN(Model):
"""
A CNN for text classification.
Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
"""
# TODO change function invocations to include last 2 arguments
def __init__(self, config, idx2label, word_embeddings, label2idx, char_embeddings):
self.word_embeddings = word_embeddings
self.char_embeddings = char_embeddings
self.idx2label = idx2label
self.class_names = map(lambda x: x[0], sorted(label2idx.items(), key=lambda x: x[1]))
self.config = config
self.build()
def add_placeholders(self):
with tf.variable_scope("input_placeholders"):
self.word_input_placeholder = tf.placeholder(shape=[None, self.config.max_seq_len],
dtype=tf.int32, name="batch_word_indices")
with tf.variable_scope("input_char_placeholders"):
self.char_input_placeholder = tf.placeholder(
shape=[None, self.config.max_seq_len, self.config.max_word_len],
dtype=tf.int32, name="batch_char_indices")
with tf.variable_scope("label_placeholders"):
self.labels_placeholder = tf.placeholder(shape=[None, self.config.num_classes],
dtype=tf.float32, name="batch_one_hot_targets")
with tf.variable_scope("word_regularization"):
self.dropout_placeholder_word = tf.placeholder(shape=(), dtype=tf.float32, name="dropout")
with tf.variable_scope("char_regularization"):
self.dropout_placeholder_char = tf.placeholder(shape=(), dtype=tf.float32, name="dropout")
with tf.variable_scope("fc_regularization"):
self.dropout_placeholder_fc = tf.placeholder(shape=(), dtype=tf.float32, name="dropout")
self.is_training = tf.placeholder(tf.bool, name='is_training')
self.class_weights = tf.constant([self.config.class_weights], dtype=tf.float32)
def create_feed_dict(self, inputs_batch, labels_batch=None, keep_prob_word=1, keep_prob_char=1, keep_prob_fc=1,
is_training=False):
feed_dict = {
self.word_input_placeholder: inputs_batch[0],
self.char_input_placeholder: inputs_batch[1],
self.dropout_placeholder_word: keep_prob_word,
self.dropout_placeholder_char: keep_prob_char,
self.dropout_placeholder_fc: keep_prob_fc,
self.is_training: is_training
}
if labels_batch is not None:
feed_dict[self.labels_placeholder] = labels_batch
return feed_dict
def gaussian_noise_layer(self, input_layer, std):
noise = tf.random_normal(shape=tf.shape(input_layer), mean=0.0, stddev=std, dtype=tf.float32)
return input_layer + noise
def add_embedding(self):
with tf.variable_scope("feature_lookup"):
self.word_embedding_matrix = random_uniform_initializer(self.word_embeddings.shape, "word_embedding_matrix",
0.01, trainable=True)
self.char_embedding_matrix = random_uniform_initializer(self.char_embeddings.shape, "char_embedding_matrix",
0.01, trainable=True)
word_context_embeddings = tf.nn.embedding_lookup(self.word_embedding_matrix, self.word_input_placeholder)
char_context_embeddings = tf.nn.embedding_lookup(self.char_embedding_matrix, self.char_input_placeholder)
# temp = tf.cond(self.is_training, True, False)
if self.config.add_gaussian_noise is True and self.is_training is not None:
word_context_embeddings = tf.cond(self.is_training,
lambda: self.gaussian_noise_layer(word_context_embeddings, 0.1),
lambda: tf.identity(word_context_embeddings))
char_context_embeddings = tf.cond(self.is_training,
lambda: self.gaussian_noise_layer(char_context_embeddings, 0.01),
lambda: tf.identity(char_context_embeddings))
# [N, H, W] -> [N, H, W, C]
word_context_embeddings_expanded = tf.expand_dims(word_context_embeddings, -1)
char_context_embeddings_expanded = tf.expand_dims(char_context_embeddings, -1)
return word_context_embeddings, word_context_embeddings_expanded, char_context_embeddings, char_context_embeddings_expanded
"""
def add_prediction_op(self):
print "***Building network with ReLU activation***"
word_context_embeddings, word_context_embeddings_expanded, \
char_context_embeddings, char_context_embeddings_expanded = self.add_embedding()
# step - 1 :: CNN over characters
pooled_char_outputs = []
# char CNN
for i, char_filter_size in enumerate(self.config.char_filter_sizes):
with tf.variable_scope("char-conv-maxpool-%s" % char_filter_size):
# Convolution Layer
filter_shape = [1, char_filter_size, self.config.char_embedding_dim, 1,
self.config.char_num_filters] # [H, W, in_c, out_c]
# try xavior also
# filter = random_truncated_normal_initializer(filter_shape, "filter", stddev=0.1)
filter = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[self.config.char_num_filters]), name="conv_bias")
conv = tf.nn.conv3d(
char_context_embeddings_expanded,
filter,
strides=[1, 1, 1, 1, 1],
padding="VALID",
name="conv")
print "conv shape:", conv.get_shape().as_list()
h = tf.nn.tanh(tf.nn.bias_add(conv, b), name="relu") # [B, new_H, new_W, out_c]
# h_batch_norm = tf.contrib.layers.batch_norm(h,
# center=True, scale=True,
# is_training=self.is_training,
# scope='bn')
h_shape = h.get_shape().as_list()
h_4d = tf.reshape(h, [-1, h_shape[2], h_shape[3], h_shape[4]], "char_4d_h")
pooled = tf.nn.max_pool(
h_4d,
ksize=[1, self.config.max_word_len - char_filter_size + 1, 1, 1], # why k_size[2] = 1?
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_shape = pooled.get_shape().as_list()
pooled_5d = tf.reshape(pooled,
[-1, h_shape[1], pooled_shape[1], pooled_shape[2], pooled_shape[3]])
pooled_char_outputs.append(pooled_5d)
char_num_filters_total = self.config.char_num_filters * len(self.config.char_filter_sizes)
self.h_pool_char = tf.concat(pooled_char_outputs, 4) # collect across all output channels [B, T, o_h, o_w, o_c]
self.h_pool_char_flat = tf.reshape(self.h_pool_char, [-1, self.config.max_seq_len,
char_num_filters_total]) # [B, T, num_features]
# Step -2 :: Highway layer(s) over char-CNN
if self.config.use_highway_layer:
print("***Adding Highway Layer on top of char CNN***")
curr_input = self.h_pool_char_flat
for i in range(self.config.num_highway_layers):
curr_input_2d = tf.reshape(curr_input, [-1, char_num_filters_total])
# Highway Layer
with tf.variable_scope("highway_layer_" + str(i + 1)):
with tf.variable_scope("transform_gate"): # use negative bias = -1 (ref: paper, blogs)
W_T = xavier_initializer((char_num_filters_total, char_num_filters_total), "W_T")
# b_T = xavier_initializer((char_num_filters_total,), "bias_T")
b_T = tf.Variable(tf.constant(-2., shape=[char_num_filters_total, ]), name="bias_T")
activations_T = tf.nn.sigmoid(
tf.nn.xw_plus_b(curr_input_2d, W_T, b_T, name="transform_activations"))
print("transformed activations shape: {}".format(activations_T.get_shape().as_list()))
with tf.variable_scope("output_gate"):
W = xavier_initializer((char_num_filters_total, char_num_filters_total), "W")
b = xavier_initializer((char_num_filters_total,), "bias")
activations_output = tf.nn.relu(tf.nn.xw_plus_b(curr_input_2d, W, b,
name="out_activations"))
print("output activations shape: {}".format(activations_output.get_shape().as_list()))
activations_carry = 1. - activations_T
highway_output = activations_T * activations_output + activations_carry * curr_input_2d
curr_input = highway_output
self.highway_output = tf.reshape(highway_output, [-1, self.config.max_seq_len,
char_num_filters_total], name="highway_output")
pooled_char_cnn_word_outputs = []
if self.config.use_highway_layer:
char_cnn_word_input = tf.expand_dims(self.highway_output, -1)
else:
char_cnn_word_input = tf.expand_dims(self.h_pool_char_flat, -1)
# Step-3: word-CNN over representation obtained from char-CNN + optional Highway layer(s)
for i, word_filter_size in enumerate(self.config.word_filter_sizes):
with tf.variable_scope("char-CNN-word-conv-maxpool-%s" % word_filter_size):
# Convolution Layer
filter_shape = [word_filter_size, char_num_filters_total, 1,
self.config.word_num_filters] # [H, W, in_c, out_c]
# try xavior also
# filter = random_truncated_normal_initializer(filter_shape, "filter", stddev=0.1)
filter = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[self.config.word_num_filters]), name="conv_bias")
conv = tf.nn.conv2d(
char_cnn_word_input,
filter,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
print "conv shape:", conv.get_shape().as_list()
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # [B, new_H, new_W, out_c]
# h_batch_norm = tf.contrib.layers.batch_norm(h,
# center=True, scale=True,
# is_training=self.is_training,
# scope='bn')
pooled = tf.nn.max_pool(
h,
ksize=[1, self.config.max_seq_len - word_filter_size + 1, 1, 1], # why k_size[2] = 1?
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_char_cnn_word_outputs.append(pooled)
# Combine all the pooled features
word_num_filters_total = self.config.word_num_filters * len(self.config.word_filter_sizes)
self.h_pool_char_cnn_word = tf.concat(pooled_char_cnn_word_outputs,
3) # collect across all output channels [B, T, out_H, out_d]
self.h_pool_char_cnn_word_2d = tf.reshape(self.h_pool_char_cnn_word,
[-1, word_num_filters_total]) # [B, num_features]
# Step - 4: word-CNN over pre-trained embeddings
pooled_word_outputs = []
# word CNN
for i, word_filter_size in enumerate(self.config.word_filter_sizes):
with tf.variable_scope("word-conv-maxpool-%s" % word_filter_size):
# Convolution Layer
filter_shape = [word_filter_size, self.config.embedding_dim, 1,
self.config.word_num_filters] # [H, W, in_c, out_c]
# try xavior also
# filter = random_truncated_normal_initializer(filter_shape, "filter", stddev=0.1)
filter = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[self.config.word_num_filters]), name="conv_bias")
conv = tf.nn.conv2d(
word_context_embeddings_expanded,
filter,
strides=[1, 1, 1, 1],
padding="VALID",
name="conv")
print "conv shape:", conv.get_shape().as_list()
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # [B, new_H, new_W, out_c]
# h_batch_norm = tf.contrib.layers.batch_norm(h,
# center=True, scale=True,
# is_training=self.is_training,
# scope='bn')
pooled = tf.nn.max_pool(
h,
ksize=[1, self.config.max_seq_len - word_filter_size + 1, 1, 1], # why k_size[2] = 1?
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_word_outputs.append(pooled)
# Combine all the pooled features
word_num_filters_total = self.config.word_num_filters * len(self.config.word_filter_sizes)
self.h_pool_word = tf.concat(pooled_word_outputs,
3) # collect across all output channels [B, T, out_H, out_d]
self.h_pool_word_2d = tf.reshape(self.h_pool_word, [-1, word_num_filters_total]) # [B, num_features]
# Step-5: concat features from both word CNN's
self.batch_vectors = tf.concat([self.h_pool_char_cnn_word_2d, self.h_pool_word_2d],
1) # [B, num_features]
feature_vec_len = self.batch_vectors.get_shape().as_list()[1]
activations = self.batch_vectors
# Step-6: FC layer + dropout
if self.config.use_fc_layer:
# Final (unnormalized) scores and predictions
with tf.variable_scope("fc_layer"):
W = xavier_initializer((feature_vec_len, self.config.fc_layer_dim), "W")
b = xavier_initializer((self.config.fc_layer_dim,), "bias")
activations = tf.nn.dropout(
tf.nn.relu(tf.nn.xw_plus_b(self.batch_vectors, W, b, name="prediction_logits")),
keep_prob=self.dropout_placeholder_fc)
feature_vec_len = activations.get_shape().as_list()[1]
# Step-7: softmax layer
with tf.variable_scope("output_layer"):
W1 = xavier_initializer((feature_vec_len, self.config.num_classes), "W")
b1 = xavier_initializer((self.config.num_classes,), "bias")
predictions = tf.nn.xw_plus_b(activations, W1, b1, name="prediction_logits")
return predictions
"""
def add_prediction_op(self):
print "***Building network with ReLU activation***"
word_context_embeddings, word_context_embeddings_expanded, \
char_context_embeddings, char_context_embeddings_expanded = self.add_embedding()
# step - 1 :: CNN over characters
pooled_char_outputs = []
# char CNN
for i, char_filter_size in enumerate(self.config.char_filter_sizes):
with tf.variable_scope("char-conv-maxpool-%s" % char_filter_size):
# Convolution Layer
filter_shape = [1, char_filter_size, self.config.char_embedding_dim, 1,
self.config.char_num_filters] # [H, W, in_c, out_c]
# try xavior also
# filter = random_truncated_normal_initializer(filter_shape, "filter", stddev=0.1)
filter = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[self.config.char_num_filters]), name="conv_bias")
conv = tf.nn.conv3d(
char_context_embeddings_expanded,
filter,
strides=self.config.char_stride,
padding="VALID",
name="conv")
print "conv shape:", conv.get_shape().as_list()
h = tf.nn.tanh(tf.nn.bias_add(conv, b), name="relu") # [B, new_H, new_W, out_c]
# h_batch_norm = tf.contrib.layers.batch_norm(h,
# center=True, scale=True,
# is_training=self.is_training,
# scope='bn')
h_shape = h.get_shape().as_list()
h_4d = tf.reshape(h, [-1, h_shape[2], h_shape[3], h_shape[4]], "char_4d_h")
pooled = tf.nn.max_pool(
h_4d,
ksize=[1, h_4d.get_shape().as_list()[1], 1, 1], # why k_size[2] = 1?
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_shape = pooled.get_shape().as_list()
pooled_5d = tf.reshape(pooled,
[-1, h_shape[1], pooled_shape[1], pooled_shape[2], pooled_shape[3]])
pooled_char_outputs.append(pooled_5d)
char_num_filters_total = self.config.char_num_filters * len(self.config.char_filter_sizes)
self.h_pool_char = tf.concat(pooled_char_outputs, 4) # collect across all output channels [B, T, o_h, o_w, o_c]
self.h_pool_char_flat = tf.reshape(self.h_pool_char, [-1, self.config.max_seq_len,
char_num_filters_total]) # [B, T, num_features]
# Step -2 :: Highway layer(s) over char-CNN
if self.config.use_highway_layer:
print("***Adding Highway Layer on top of char CNN***")
curr_input = self.h_pool_char_flat
for i in range(self.config.num_highway_layers):
curr_input_2d = tf.reshape(curr_input, [-1, char_num_filters_total])
# Highway Layer
with tf.variable_scope("highway_layer_" + str(i + 1)):
with tf.variable_scope("transform_gate"): # use negative bias = -1 (ref: paper, blogs)
W_T = xavier_initializer((char_num_filters_total, char_num_filters_total), "W_T")
# b_T = xavier_initializer((char_num_filters_total,), "bias_T")
b_T = tf.Variable(tf.constant(-2., shape=[char_num_filters_total, ]), name="bias_T")
activations_T = tf.nn.sigmoid(
tf.nn.xw_plus_b(curr_input_2d, W_T, b_T, name="transform_activations"))
print("transformed activations shape: {}".format(activations_T.get_shape().as_list()))
with tf.variable_scope("output_gate"):
W = xavier_initializer((char_num_filters_total, char_num_filters_total), "W")
b = xavier_initializer((char_num_filters_total,), "bias")
activations_output = tf.nn.relu(tf.nn.xw_plus_b(curr_input_2d, W, b,
name="out_activations"))
print("output activations shape: {}".format(activations_output.get_shape().as_list()))
activations_carry = 1. - activations_T
highway_output = activations_T * activations_output + activations_carry * curr_input_2d
curr_input = highway_output
self.highway_output = tf.reshape(highway_output, [-1, self.config.max_seq_len,
char_num_filters_total], name="highway_output")
pooled_char_cnn_word_outputs = []
if self.config.use_highway_layer:
char_word_context_embeddings = self.highway_output
else:
char_word_context_embeddings = self.h_pool_char_flat
# Step-3: concat features
self.context_embeddings = tf.expand_dims(tf.concat([word_context_embeddings, char_word_context_embeddings],
2), -1)
feature_vec_len = self.context_embeddings.get_shape().as_list()[2]
# Step - 4: word-CNN
pooled_word_outputs = []
# word CNN
for i, word_filter_size in enumerate(self.config.word_filter_sizes):
with tf.variable_scope("word-conv-maxpool-%s" % word_filter_size):
# Convolution Layer
filter_shape = [word_filter_size, feature_vec_len, 1,
self.config.word_num_filters] # [H, W, in_c, out_c]
# try xavior also
# filter = random_truncated_normal_initializer(filter_shape, "filter", stddev=0.1)
filter = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[self.config.word_num_filters]), name="conv_bias")
conv = tf.nn.conv2d(
self.context_embeddings,
filter,
strides=self.config.word_stride,
padding="VALID",
name="conv")
print "conv shape:", conv.get_shape().as_list()
h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # [B, new_H, new_W, out_c]
# h_batch_norm = tf.contrib.layers.batch_norm(h,
# center=True, scale=True,
# is_training=self.is_training,
# scope='bn')
pooled = tf.nn.max_pool(
h,
ksize=[1, h.get_shape().as_list()[1], 1, 1], # why k_size[2] = 1?
strides=[1, 1, 1, 1],
padding='VALID',
name="pool")
pooled_word_outputs.append(pooled)
# Combine all the pooled features
word_num_filters_total = self.config.word_num_filters * len(self.config.word_filter_sizes)
self.h_pool_word = tf.concat(pooled_word_outputs,
3) # collect across all output channels [B, T, out_H, out_d]
self.h_pool_word_2d = tf.reshape(self.h_pool_word,
[-1, word_num_filters_total]) # [B, num_features]
activations = self.h_pool_word_2d
feature_vec_len = word_num_filters_total
# Step-5: FC layer + dropout
if self.config.use_fc_layer:
# Final (unnormalized) scores and predictions
with tf.variable_scope("fc_layer"):
W = xavier_initializer((feature_vec_len, self.config.fc_layer_dim), "W")
b = xavier_initializer((self.config.fc_layer_dim,), "bias")
activations = tf.nn.dropout(
tf.nn.relu(tf.nn.xw_plus_b(self.h_pool_word_2d, W, b, name="prediction_logits")),
keep_prob=self.dropout_placeholder_fc)
feature_vec_len = activations.get_shape().as_list()[1]
# Step-6: softmax layer
with tf.variable_scope("output_layer"):
W1 = xavier_initializer((feature_vec_len, self.config.num_classes), "W")
b1 = xavier_initializer((self.config.num_classes,), "bias")
predictions = tf.nn.xw_plus_b(tf.nn.dropout(activations, keep_prob=self.dropout_placeholder_word), W1, b1,
name="prediction_logits")
return predictions
def l2_loss_sum(self, tvars):
return tf.add_n([tf.nn.l2_loss(t) for t in tvars], "l2_norms_sum")
def write_predictions(self, pred, path):
predicted_label_ids = tf.argmax(tf.nn.softmax(pred), axis=1)
predicted_labels = map(lambda x: self.idx2label[x], predicted_label_ids)
np.savetxt(path, predicted_labels)
def add_loss_op(self, pred):
tvars = tf.trainable_variables()
without_bias_tvars = [tvar for tvar in tvars if 'bias' not in tvar.name]
with tf.variable_scope("loss"):
# weighted_labels = self.labels_placeholder * self.class_weights
weight_per_instance = tf.transpose(tf.matmul(self.labels_placeholder, tf.transpose(self.class_weights))) #shape [1, batch_size]
weighted_cross_entropy_loss = tf.reduce_mean(tf.multiply(weight_per_instance, tf.nn.softmax_cross_entropy_with_logits(
labels=self.labels_placeholder, logits=pred), name="batch_xentropy_loss"))
l2_loss = tf.multiply(self.config.reg_val, self.l2_loss_sum(without_bias_tvars), name="l2_loss")
loss = tf.add(weighted_cross_entropy_loss, l2_loss, name="total_batch_loss")
tf.summary.scalar("batch_loss", loss)
return loss
def add_accuracy_op(self, pred):
with tf.variable_scope("accuracy"):
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(pred, axis=1),
tf.argmax(self.labels_placeholder, axis=1)), dtype=tf.float32),
name="curr_batch_accuracy")
return accuracy
def get_prediction_labels(self, pred):
predicted_ids = tf.argmax(pred, axis=1)
target_ids = tf.argmax(self.labels_placeholder, axis=1)
return predicted_ids, target_ids
def add_training_op(self, loss):
# update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# with tf.control_dependencies(update_ops):
with tf.variable_scope("optimizer"):
optimizer = tf.train.AdamOptimizer(learning_rate=self.config.lr, name="adam_optimizer")
tvars = tf.trainable_variables()
grad_tvars = optimizer.compute_gradients(loss, tvars)
self.write_gradient_summaries(grad_tvars)
train_op = optimizer.apply_gradients(grad_tvars)
return train_op
def train_on_batch(self, sess, inputs_batch, labels_batch, merged):
feed = self.create_feed_dict(inputs_batch, labels_batch=labels_batch,
keep_prob_word=self.config.keep_prob, keep_prob_fc=self.config.keep_prob_fc,
is_training=True)
_, summary, loss = sess.run([self.train_op, merged, self.loss], feed_dict=feed)
return summary, loss
def write_gradient_summaries(self, grad_tvars):
with tf.variable_scope("gradient_summaries"):
for (grad, tvar) in grad_tvars:
mean = tf.reduce_mean(grad)
stddev = tf.sqrt(tf.reduce_mean(tf.square(grad - mean)))
tf.summary.histogram("{}/hist".format(tvar.name), grad)
tf.summary.scalar("{}/mean".format(tvar.name), mean)
tf.summary.scalar("{}/stddev".format(tvar.name), stddev)
tf.summary.scalar("{}/sparsity".format(tvar.name), tf.nn.zero_fraction(grad))
def run_epoch(self, sess, config, dataset, train_writer, merged):
prog = Progbar(target=1 + len(dataset.train_inputs[0]) / config.batch_size)
for i, (train_x, train_y) in enumerate(get_minibatches([dataset.train_inputs, dataset.train_targets],
config.batch_size, is_multi_feature_input=True)):
print "word input, char input, outout: {}, {}, {}".format(np.array(train_x[0]).shape,
np.array(train_x[1]).shape,
np.array(train_y).shape)
summary, loss = self.train_on_batch(sess, train_x, train_y, merged)
prog.update(i + 1, [("train loss", loss)])
# feed = self.create_feed_dict(dataset.train_inputs, labels_batch=dataset.train_targets,
# keep_prob_word=self.config.keep_prob, keep_prob_fc=self.config.keep_prob_fc,
# is_training=False)
# train_accuracy = sess.run(self.accuracy, feed_dict=feed)
# print "- train Accuracy: {:.2f}".format(train_accuracy * 100.0)
return summary, loss # returns for Last batch
def run_valid_epoch(self, sess, dataset, valid_writer, merged):
print "\nEvaluating on dev set",
total_correct = 0
total_loss = []
predicted_ids = []
target_ids = []
for i, (valid_x, valid_y) in enumerate(
get_minibatches([dataset.valid_inputs, dataset.valid_targets], self.config.test_batch_size,
is_multi_feature_input=True)):
batch_feed = self.create_feed_dict(valid_x, labels_batch=valid_y, is_training=False)
batch_predictions, batch_loss, batch_accuracy = sess.run([self.pred, self.loss, self.accuracy],
feed_dict=batch_feed)
total_correct += (batch_accuracy * len(valid_y))
total_loss.append(batch_loss)
predicted_ids.extend(list(np.argmax(batch_predictions, axis=1)))
target_ids.extend(list(np.argmax(valid_y, axis=1)))
valid_loss = sum(total_loss) / float(len(total_loss))
valid_accuracy = float(total_correct) / len(dataset.valid_targets)
valid_f1_score = get_weighted_f1_score(predicted_ids, target_ids)
return valid_loss, valid_accuracy, valid_f1_score
def dump_incorrect_predictions(self, predictions, targets, offset, incorrect_predictions_path, predictions_path):
predicted_label_ids = np.argmax(predictions, axis=1)
predicted_labels = map(lambda x: self.idx2label[x], predicted_label_ids)
# dump predictions
f = open(predictions_path, "a")
for each in predicted_labels:
f.write(each + "\n")
f.close()
# dump incorrect predictions
actual_label_ids = np.argmax(targets, axis=1)
actual_labels = map(lambda x: self.idx2label[x], actual_label_ids)
write_wrong_predictions(actual_labels, predicted_labels, offset, incorrect_predictions_path)
def run_test_epoch(self, sess, dataset):
print "\nEvaluating on Test set",
total_correct = 0
total_loss = []
predicted_ids = []
target_ids = []
incorrect_predictions_path = os.path.join(DataConfig.data_dir_path, DataConfig.model_dir,
DataConfig.test_incorrect_predictions_file)
predictions_path = os.path.join(DataConfig.data_dir_path, DataConfig.model_dir,
DataConfig.test_predictions_file)
if os.path.exists(predictions_path):
os.remove(predictions_path)
if os.path.exists(incorrect_predictions_path):
os.remove(incorrect_predictions_path)
offset = 0
for i, (test_x, test_y) in enumerate(
get_minibatches([dataset.test_inputs, dataset.test_targets], self.config.test_batch_size, shuffle=False,
is_multi_feature_input=True)):
batch_feed = self.create_feed_dict(test_x, labels_batch=test_y, is_training=False)
batch_predictions, batch_loss, batch_accuracy = sess.run([self.pred, self.loss, self.accuracy],
feed_dict=batch_feed)
total_correct += (batch_accuracy * len(test_y))
total_loss.append(batch_loss)
predicted_ids.extend(list(np.argmax(batch_predictions, axis=1)))
target_ids.extend(list(np.argmax(test_y, axis=1)))
self.dump_incorrect_predictions(batch_predictions, test_y, offset, incorrect_predictions_path,
predictions_path)
offset += len(test_y)
test_loss = sum(total_loss) / float(len(total_loss))
test_accuracy = float(total_correct) / len(dataset.test_targets)
test_f1_score = get_weighted_f1_score(predicted_ids, target_ids)
return test_loss, test_accuracy, test_f1_score
# predicted_ids, target_ids = sess.run([self.prediction_labels, self.target_labels], feed_dict=feed)
# print_confusion_matrix(predicted_ids, target_ids, self.class_names, "/home/asjindal/metlife_test_cm.png")
# return test_loss, test_accuracy
def fit(self, sess, saver, config, dataset, train_writer, valid_writer, merged, resume_training=False):
if resume_training:
_, best_valid_accuracy, best_valid_f1_score = self.run_valid_epoch(sess, dataset, valid_writer, merged)
else:
best_valid_accuracy = 0.
best_valid_f1_score = 0.
print "current best valid_accuracy:{:.2f}\tvalid_f1_score:{:.2f}".format(best_valid_accuracy, best_valid_f1_score)
for epoch in range(config.n_epochs):
print "Epoch {:} out of {:}".format(epoch + 1, self.config.n_epochs)
summary, loss = self.run_epoch(sess, config, dataset, train_writer, merged)
if (epoch + 1) % dataset.model_config.run_valid_after_epochs == 0:
valid_loss, valid_accuracy, valid_f1_score = self.run_valid_epoch(sess, dataset, valid_writer, merged)
print "\n- valid Accuracy: {:.2f}".format(valid_accuracy * 100.0)
print "- valid f1-score: {:.2f}".format(valid_f1_score * 100.0)
print "- valid loss: {:.4f}".format(valid_loss)
valid_accuracy_summary = tf.summary.scalar("valid_UAS", tf.constant(valid_accuracy, dtype=tf.float32))
valid_writer.add_summary(sess.run(valid_accuracy_summary), epoch + 1)
if self.config.accuracy_metric == "accuracy":
if valid_accuracy > best_valid_accuracy:
best_valid_accuracy = valid_accuracy
if saver:
print "New best dev accuracy! Saving model.."
saver.save(sess, os.path.join(DataConfig.data_dir_path, DataConfig.model_dir,
DataConfig.model_name))
elif self.config.accuracy_metric == "f1_score":
if valid_f1_score > best_valid_f1_score:
best_valid_f1_score = valid_f1_score
if saver:
print "New best dev f1-score! Saving model.."
saver.save(sess, os.path.join(DataConfig.data_dir_path, DataConfig.model_dir,
DataConfig.model_name))
# trainable variables summary -> only for training
if (epoch + 1) % dataset.model_config.write_summary_after_epochs == 0:
train_writer.add_summary(summary, global_step=epoch + 1)
print