-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathFire_Neurons.py
80 lines (66 loc) · 1.9 KB
/
Fire_Neurons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import queue
import numpy as np
import functools
import matplotlib.pyplot as plt
max_x = 10
max_y = 10
image_neurons = np.zeros((max_x, max_y))
# Function to check if a cell
# is be visited or not
def isValid(vis, row, col):
# If cell lies out of bounds
if row < 0 or col < 0 or row >= max_x or col >= max_y:
return False
# If cell is already visited
if vis[row][col]:
return False
# Otherwise
return True
def fire_neuron(grid, row, col):
vis = np.zeros((max_x, max_y))
# Stores indices of the matrix cells
q = []
dRow = [0, 1, 1, -1, 0, -1, 1]
dCol = [1, 0, 1, 0, -1, -1, 1]
# Mark the starting cell as visited
# and push it into the queue
q.append((row, col, max(row, col, max_x - row, max_y - col)))
vis[row][col] = True
# Iterate while the queue
# is not empty
while len(q) > 0:
cell = q.pop()
x = cell[0]
y = cell[1]
value = cell[2]
image_neurons[x][y] = value
# q.pop()
# Go to the adjacent cells
for i in range(len(dCol)):
adjx = x + dRow[i]
adjy = y + dCol[i]
if isValid(vis, adjx, adjy):
q.append((adjx, adjy, value - 1))
print((adjx, adjy, value - 1), end='\t')
vis[adjx][adjy] = True
print()
# print("Image neurons", len(image_neurons))
# fire_neuron(image_neurons, 0, 0)
# print(image_neurons)
# plt.imshow(image_neurons, cmap='gray', interpolation='none')
# plt.show()
value = 4
dRow = [0, 1, 1, -1, 0]
dCol = [1, 0, 1, 0, -1]
x = 3
y = 3
vis = np.zeros((max_x, max_y))
for i in range(len(dCol)):
adjx = x + dRow[i]
adjy = y + dCol[i]
image_neurons[adjx][adjy] = value - 1
if isValid(vis, adjx, adjy):
image_neurons[adjx][adjy] = value - 1
print((adjx, adjy, value - 1), end='\t')
plt.imshow(image_neurons, interpolation='none')
plt.show()