-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgeographic_analysis.R
150 lines (100 loc) · 5.91 KB
/
geographic_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Code to analise the influence of the geographical track of on the duration of hurricanes
# Author: Alfredo Hernández <[email protected]>
# Source base code -----------------------------------------
source("geographic_base.R")
# Get RAW data ---------------------------------------------
storms.all <- as_tibble(data.table::fread('data/hurdat2-all.csv'))
storms.natl <- storms.all %>%
dplyr::filter(basin == "NATL") %>%
dplyr::filter(storm.year >= 1966)
storms.epac <- storms.all %>%
dplyr::filter(basin == "EPAC") %>%
dplyr::filter(storm.year >= 1986)
storms.natl <- arrange(storms.natl, date.time)
storms.epac <- arrange(storms.epac, date.time)
storms.all <- rbind(storms.natl, storms.epac)
# write_csv(storms.natl, "data/hurdat2-natl.csv")
# write_csv(storms.epac, "data/hurdat2-epac.csv")
# Summarise geographical information -----------------------
# Summarise data frame
storms.tracks <- storms.all %>%
group_by(storm.id) %>%
mutate(distance = distance_slc(lat, lag(lat), long, lag(long))) %>%
mutate(distance = ifelse(is.na(distance), 0, distance)) %>%
summarise(first.lat = first(lat), last.lat = last(lat),
first.long = first(long), last.long = last(long),
distance = sum(distance))
# Read PDI data frame
pdi.all <- as_tibble(data.table::fread('data/hurdat2-hadisst-1966-2016_pdis.csv'))
# Join data frames by storm.id
storms.joint <- full_join(pdi.all, storms.tracks)
storms.joint <- storms.joint %>%
dplyr::filter(!is.na(storm.name))
# Write CSV
# write_csv(storms.joint, 'data/hurdat2-hadisst-1966-2016_pdis_geo.csv')
data.epac <- storms.joint %>%
dplyr::filter(basin == "EPAC") %>%
dplyr::filter(
first.long < 0,
last.long < 0,
first.lat < 25
)
data.natl <- storms.joint %>%
dplyr::filter(basin == "NATL")
storms.joint <- rbind(data.epac, data.natl)
storms.joint <- storms.joint %>%
mutate(storm.duration = measurements::conv_unit(storm.duration, "sec", "hr"))
# Forward speed --------------------------------------------
# Histograms
plot_distance_histogram_alt("NATL", 33) + theme_bw() #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "natl-forward-speed.pdf", width = 6, height = 2.5, dpi = 96, device = cairo_pdf)
plot_distance_histogram_alt("EPAC", 33) + theme_bw() #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "epac-forward-speed.pdf", width = 6, height = 2.5, dpi = 96, device = cairo_pdf)
# Analysis of travelled distance ---------------------------
# Summary of the distances
storms.joint %>%
group_by(sst.class, basin) %>%
summarise(dist.mean = round(mean(distance)/1000))
# Summary of the durations
storms.joint %>%
group_by(sst.class, basin) %>%
summarise(dist.mean = round(mean(storm.duration)))
# Summarise storms with longest paths
get_longest_paths("NATL")
get_longest_paths("EPAC")
# Scatterplot of distance vs duration
plot_distance_scatterplot("NATL", 33) + theme_bw() #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "natl-distance-bvln.pdf", width = 5, height = 2.5, dpi = 96, device = cairo_pdf)
plot_distance_scatterplot("EPAC", 33) + theme_bw() #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "epac-distance-bvln.pdf", width = 5, height = 2.5, dpi = 96, device = cairo_pdf)
# Position marginals ---------------------------------------
# North Atlantic
plot_position_densities("NATL", "first.long", "Genesis longitude", 33) #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "natl-init-long.pdf", width = 4, height = 2.5, dpi = 96, device = cairo_pdf)
plot_position_densities("NATL", "last.long", "Death longitude", 33) #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "natl-final-long.pdf", width = 4, height = 2.5, dpi = 96, device = cairo_pdf)
plot_position_densities("NATL", "first.lat", "Genesis latitude", 33) #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "natl-init-lat.pdf", width = 4, height = 2.5, dpi = 96, device = cairo_pdf)
plot_position_densities("NATL", "last.lat", "Death longitude", 33) #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "natl-final-lat.pdf", width = 4, height = 2.5, dpi = 96, device = cairo_pdf)
# Northeast Pacific
plot_position_densities("EPAC", "first.long", "Genesis longitude", 33) #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "epac-init-long.pdf", width = 4, height = 2.5, dpi = 96, device = cairo_pdf)
plot_position_densities("EPAC", "last.long", "Death longitude", 33) #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "epac-final-long.pdf", width = 4, height = 2.5, dpi = 96, device = cairo_pdf)
plot_position_densities("EPAC", "first.lat", "Genesis latitude", 33) #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "epac-init-lat.pdf", width = 4, height = 2.5, dpi = 96, device = cairo_pdf)
plot_position_densities("EPAC", "last.lat", "Death latitude", 33) #+ theme(text = element_text(family = "Palatino")) + ggsave(filename = "epac-final-lat.pdf", width = 4, height = 2.5, dpi = 96, device = cairo_pdf)
storms.joint %>%
group_by(sst.class, basin) %>%
summarise(
mean.first.long = round(mean(first.long), 2),
sd.first.long = round(sd(first.long), 2),
mean.first.lat = round(mean(first.lat), 2),
sd.first.lat = round(sd(first.lat), 2),
mean.last.long = round(mean(last.long), 2),
sd.last.long = round(sd(last.long), 2),
mean.last.lat = round(mean(last.lat), 2),
sd.last.lat = round(sd(last.lat), 2)
) %>%
data.frame()
# Position clustering --------------------------------------
# Scatterplot of initial and final positions
plot_positions("NATL", "first", 33)
plot_positions("EPAC", "first", 33)
# Scatterplot of initial and final positions
plot_positions("NATL", "last", 33)
plot_positions("EPAC", "last", 33)
plot_clusters("NATL", "first", 33, n.clust = 2)
plot_clusters("NATL", "last", 33, n.clust = 2)
plot_clusters("EPAC", "first", 33, n.clust = 2)
plot_clusters("EPAC", "last", 33, n.clust = 2)