-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathN100_data_obtention.py
26 lines (21 loc) · 1.21 KB
/
N100_data_obtention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#!/bin/python3
import numpy as np
import matplotlib.pyplot as plt; plt.rc('font', size=16)
import pandas as pd
from numba import njit
from qs_stochastic import *
N = 100
ensemble, time = ensemble_simulation(ensemble_size=1, t_max=1)
x_means, x_stds, time_ss, x_ss, x_ss_mean, x_ss_std, x_ss_noise = regularized_ensemble_stats(ensemble, time)
AI1_ext = np.linspace(0, 80000, 25, dtype=int)
for i in range(len(AI1_ext)):
ensemble, time = ensemble_simulation(N=N, AI1_ext=AI1_ext[i])
x_means, x_stds, time_ss, x_ss, x_ss_mean, x_ss_std, x_ss_noise = regularized_ensemble_stats(ensemble, time)
save_ensemble_ss_stats(x_ss, x_ss_mean, x_ss_std, x_ss_noise, N=N, AI1_ext=AI1_ext[i])
if i == 0:
plot_ensemble(ensemble, time, x_means, x_stds, N=N, AI1_ext=AI1_ext[i], action='save')
plot_ensamble_ss(time_ss, x_ss, x_ss_mean, x_ss_std, x_ss_noise, N=N, AI1_ext=AI1_ext[i], action='save')
elif i == len(AI1_ext)-1:
plot_ensemble(ensemble, time, x_means, x_stds, N=N, AI1_ext=AI1_ext[i], action='save')
plot_ensamble_ss(time_ss, x_ss, x_ss_mean, x_ss_std, x_ss_noise, N=N, AI1_ext=AI1_ext[i], action='save')
del ensemble, time, x_means, x_stds, time_ss, x_ss, x_ss_mean, x_ss_std, x_ss_noise