-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLFPSerr.m
55 lines (50 loc) · 1.71 KB
/
LFPSerr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
function [error,normalize,E,val] = LFPSerr(p,q,W0,W1,deltat,m,gradV,deltaq,deltap,a,b,H,T)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% function LFPSqm.m solves the Wigner function equation with a harmonic
% oscillator with a leap-frog pseudospectral scheme, calculates error
% between exact solution and numerical solution in L2 norm, normalization
% and energy expectation value at every time-step.
%
% p,q coordinates (vector)
% W0, W1 initial structures at t=-deltat, t=0 (array)
% deltat time step-size (constant)
% m mass (constant)
% gradV first derivative of potential (vector)
% deltaq step-size q direction
% deltap step-size p direction
% a length of interval in q direction (constant)
% b length of interval in p direction (constant)
% H hamiltonian function (array)
% T final point of time (constant)
% error error values (vector)
% normalize normalization values (vector)
% E energy expectation values (vector)
% val structure at time T
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
PM = diag(-p/m);
GRADV= diag(gradV);
val_m1 = W0;
val_0 = W1;
Tend = T/deltat;
error = zeros(1,Tend);
normalize = error;
E = error;
for s = 1:Tend
t = s*deltat; %time
%% LFPS
val = val_m1 + ...
2*deltat*DNq(val_0,a)*PM + ...
2*deltat*GRADV*DNp(val_0,b);
%% exact solution
valex = wigner_harm_osc(p,q,t,1);
%% error in L2 norm
error(s)=sqrt(deltap*deltaq)*norm((valex-val),'fro'); %L2norm(valex,val,t,deltaq,deltap,q,p);
%% normalization, energy expectation value
normalize(s)= trapz(p,trapz(q,val));
E(s)= trapz(p,trapz(q,val.*H));
val_m1 = val_0;
val_0 = val;
end
% E = trapz(p,trapz(q,val.*H));
end