-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathD2_CV_Plot_LowN.py
298 lines (216 loc) · 11.9 KB
/
D2_CV_Plot_LowN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib as mpl
import matplotlib.font_manager as fm
mpl.rcParams['font.family'] = 'Avenir LT Std'
plt.rcParams['font.size'] = 18
plt.rcParams['axes.linewidth'] = 2
import time
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import sys
import warnings
warnings.simplefilter("ignore")
import os
os.environ["PYTHONWARNINGS"] = "ignore"
import logging
logging.basicConfig(filename='T4.log', format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO)
logging.info('Started')
random_state = 1234
print('*** Import is Done!')
vaccine_type = sys.argv[1]
input_data_path = sys.argv[2]
output_path = sys.argv[3]
time_to_put = '2021-09-10'
name_dict = {'SputnikV': 'Sputnik V',
'AstraZeneca': 'AZD1222',
'Sinopharm': 'BBIBP-CorV',
'Covaxin': 'COVAXIN',
'Barekat': 'COVIran Barekat',
'Pfizer': 'BNT162b2',
'Moderna': 'mRNA-1273'}
dose_1_columns_full = ['Dose1_Fever', 'Dose1_Needle_Pain', 'Dose1_Fatigue', 'Dose1_Headache',
'Dose1_Nausea', 'Dose1_Chills', 'Dose1_Needle_Redness', 'Dose1_Joint_Pain',
'Dose1_Muscle_Pain', 'Dose1_Other', 'Dose1_Needle_Swelling', 'Dose1_Local']
dose_1_columns = ['Dose1_Fever', 'Dose1_Fatigue', 'Dose1_Headache', 'Dose1_Nausea',
'Dose1_Chills', 'Dose1_Joint_Pain', 'Dose1_Muscle_Pain',
'Dose1_Local']
dose_last_columns_full = ['Dose_Last_Fever', 'Dose_Last_Needle_Pain', 'Dose_Last_Fatigue', 'Dose_Last_Headache',
'Dose_Last_Nausea', 'Dose_Last_Chills', 'Dose_Last_Needle_Redness', 'Dose_Last_Joint_Pain',
'Dose_Last_Muscle_Pain', 'Dose_Last_Other', 'Dose_Last_Needle_Swelling', 'Dose_Last_Local']
dose_last_columns = ['Dose_Last_Fever', 'Dose_Last_Fatigue', 'Dose_Last_Headache', 'Dose_Last_Nausea',
'Dose_Last_Chills', 'Dose_Last_Joint_Pain', 'Dose_Last_Muscle_Pain',
'Dose_Last_Local']
# Plot All
logging.info('Plotting started')
all_results = {'SideEffect':[], 'ModelType':[], 'ROC-AUC':[]}
for model in ['Logistic_Regression', 'SVM', 'XGBClassifier', 'RF', 'KNN', 'MLP']:
temp = pd.read_csv(f'{output_path}/results/D2_{model}_{vaccine_type}_CVTest_{time_to_put}.csv')
for sideeffect in dose_last_columns:
all_results['SideEffect'].append(sideeffect)
all_results['ModelType'].append(model)
all_results['ROC-AUC'].append(temp[temp['Symptom'] == sideeffect].Best_Val_AUC_Mean.item())
all_results_df = pd.DataFrame(all_results)
plt.style.use('fivethirtyeight')
fig, ax1 = plt.subplots(figsize=(15, 10))
sns.barplot(data=all_results_df, x='SideEffect', y='ROC-AUC', hue='ModelType', ax=ax1)
plt.xticks(rotation=45)
plt.ylabel('AUC-ROC Performance on 5-Fold Cross Validation')
plt.title(f'Second Dose of {name_dict[vaccine_type]} Vaccine')
plt.legend(loc=4, facecolor="white")
plt.ylim(0.6,0.9)
fig.savefig(f'{output_path}/image/All_Models_{vaccine_type}_CVTest_{time_to_put}.png', bbox_inches='tight', dpi=200)
# Circle Plots
## Train
all_results = {'SideEffect':[], 'ModelType':[], 'ROC-AUC':[]}
for model in ['Logistic_Regression', 'SVM', 'XGBClassifier', 'RF', 'KNN', 'MLP']:
temp = pd.read_csv(f'{output_path}/results/D2_{model}_{vaccine_type}_CVTest_{time_to_put}.csv')
for sideeffect in dose_last_columns:
all_results['SideEffect'].append(sideeffect)
all_results['ModelType'].append(model)
all_results['ROC-AUC'].append(temp[temp['Symptom'] == sideeffect].Best_Train_AUC_Mean.item())
all_results_df = pd.DataFrame(all_results)
plt.style.use('fivethirtyeight')
plt.style.use('seaborn-darkgrid')
fig, ax = plt.subplots(figsize=(10, 6))
ax.axis([-0.5,7.5,-0.5,5.5])
sns.scatterplot(x="SideEffect", y="ModelType", size = "ROC-AUC", data=all_results_df, sizes=(1000, 2000), legend=False, color='crimson')
for i, model in enumerate(['Logistic_Regression', 'SVM', 'XGBClassifier', 'RF', 'KNN', 'MLP']):
for j, side in enumerate(dose_last_columns):
value = all_results_df[all_results_df.SideEffect == side][all_results_df.ModelType == model]['ROC-AUC'].values[0]
plt.annotate(f"{round(value,2)}", xy=(j, i), ha="center", va="center")
plt.xticks(rotation=45)
plt.title(f"Dose 2 of {name_dict[vaccine_type]}\nTraining Set")
fig.savefig(f'{output_path}/image/Train.png', bbox_inches='tight', dpi=200)
## Val
all_results = {'SideEffect':[], 'ModelType':[], 'ROC-AUC':[]}
for model in ['Logistic_Regression', 'SVM', 'XGBClassifier', 'RF', 'KNN', 'MLP']:
temp = pd.read_csv(f'{output_path}/results/D2_{model}_{vaccine_type}_CVTest_{time_to_put}.csv')
for sideeffect in dose_last_columns:
all_results['SideEffect'].append(sideeffect)
all_results['ModelType'].append(model)
all_results['ROC-AUC'].append(temp[temp['Symptom'] == sideeffect].Best_Val_AUC_Mean.item())
all_results_df = pd.DataFrame(all_results)
plt.style.use('fivethirtyeight')
plt.style.use('seaborn-darkgrid')
fig, ax = plt.subplots(figsize=(10, 6))
ax.axis([-0.5,7.5,-0.5,5.5])
sns.scatterplot(x="SideEffect", y="ModelType", size = "ROC-AUC", data=all_results_df, sizes=(1000, 2000), legend=False, color='lightseagreen')
for i, model in enumerate(['Logistic_Regression', 'SVM', 'XGBClassifier', 'RF', 'KNN', 'MLP']):
for j, side in enumerate(dose_last_columns):
value = all_results_df[all_results_df.SideEffect == side][all_results_df.ModelType == model]['ROC-AUC'].values[0]
plt.annotate(f"{round(value,2)}", xy=(j, i), ha="center", va="center")
plt.xticks(rotation=45)
plt.title("Validation Set")
plt.ylabel("Model Type")
plt.xlabel("Side Effect")
fig.savefig(f'{output_path}/image/Val.png', bbox_inches='tight', dpi=200)
logging.info('Plotting finished')
## All Param
logging.info('Param started')
all_results = {'SideEffect':[], 'ModelType':[], 'Param':[]}
for model in ['Logistic_Regression', 'SVM', 'XGBClassifier', 'RF', 'KNN', 'MLP']:
temp = pd.read_csv(f'{output_path}/results/D2_{model}_{vaccine_type}_CVTest_{time_to_put}.csv')
for sideeffect in dose_last_columns:
all_results['SideEffect'].append(sideeffect)
all_results['ModelType'].append(model)
param = temp[temp['Symptom'] == sideeffect].Best_Param.item()
param = param.replace("'", "").replace("{", "").replace("}", "")
all_results['Param'].append(param)
all_results_df = pd.DataFrame(all_results)
all_results_df.to_csv(f'D2_{vaccine_type}_Best_Param_{time_to_put}.tsv', index=False, sep='\t')
logging.info('Param finished')
## Feature importance
# Load data
data = pd.read_csv(input_data_path)
# Preprocess data
data = data[data.Age <= 120]
data = data[data.Age >= 18]
data = data[data.Height <= 200]
data = data[data.Height >= 100]
data = data[data.Weight <= 200]
data = data[data.Weight >= 30]
data['Dose1_Local'] = data[['Dose1_Needle_Redness', 'Dose1_Needle_Swelling', 'Dose1_Needle_Pain']].apply(lambda x: max(x), axis=1)
data['Dose_Last_Local'] = data[['Dose_Last_Needle_Redness', 'Dose_Last_Needle_Swelling', 'Dose_Last_Needle_Pain']].apply(lambda x: max(x), axis=1)
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = MinMaxScaler()
data['Age'] = sc.fit_transform(data[['Age']].values)
data['Height'] = sc.fit_transform(data[['Height']].values)
data['Weight'] = sc.fit_transform(data[['Weight']].values)
data['BMI'] = sc.fit_transform(data[['BMI']].values)
data = data.drop(['Height', 'Weight'], axis=1)
data = data.drop(['Dose1_Needle_Pain', 'Dose1_Needle_Redness', 'Dose1_Needle_Swelling', 'Dose1_Other'], axis=1)
result_df = pd.read_csv(f'{output_path}/results/D2_Logistic_Regression_{vaccine_type}_CVTest_{time_to_put}.csv')
coeff_df = pd.DataFrame(columns=dose_last_columns, index=data.drop(dose_last_columns_full, axis=1).columns, data=np.zeros((len(data.drop(dose_last_columns_full, axis=1).columns), len(dose_last_columns))))
for index, target in enumerate(dose_last_columns):
print('***',target,'***')
X = data.drop(dose_last_columns_full, axis=1)
y = data[target]
exec("best_param = " + result_df[result_df.Symptom == target].Best_Param.item())
best_model = LogisticRegression(**best_param)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=123)
best_model.fit(X_train, y_train)
coeff_df[target] = best_model.coef_[0]
coeff_df.index = ['Sex', 'Age', 'A', 'AB', 'B', 'O', 'Smoking', 'Substance use',
'Alcohol dependancy', 'Background Diabetes',
'Background Cardiovascular disease', 'Background Hypertension',
'Background CancerPassive', 'Background CancerActive',
'Background Neurological', 'Background pulmonary',
'Background ImmuneSystem', 'Background hematologic',
'Background Gastrointestinal', 'Background Renal',
'Background Hepatic', 'Background Skeletal', 'Background Mental',
'Background Allergy', 'Background None', 'Hormonal med',
'Pregnancy', 'Respiratory Inhaler', 'Corticosteroid Med',
'Chemotherapy Med', 'Immunosuppressive Med', 'Covid Infection',
'Covid Fever', 'Covid Fatigue', 'Covid Cough',
'Covid Gastrointestinal', 'Covid Anosmia',
'Covid RespiratoryProblems', 'Covid ConsciousnessDisorder',
'Covid Paresis', 'Covid ChestPain', 'Covid Headache',
'Covid SoreThroat', 'Covid Vertigo', 'Covid hospitalization',
'Dose1_Fever', 'Dose1_Fatigue',
'Dose1_Headache', 'Dose1_Nausea', 'Dose1_Chills','Dose1_Joint_Pain', 'Dose1_Muscle_Pain',
'BMI', 'Dose1_Local']
order =['Sex', 'Age', 'A', 'AB', 'B', 'O', 'Smoking', 'Substance use',
'Alcohol dependancy', 'Background Diabetes',
'Background Cardiovascular disease', 'Background Hypertension',
'Background CancerPassive', 'Background CancerActive',
'Background Neurological', 'Background pulmonary',
'Background ImmuneSystem', 'Background hematologic',
'Background Gastrointestinal', 'Background Renal',
'Background Hepatic', 'Background Skeletal', 'Background Mental',
'Background Allergy', 'Background None', 'Hormonal med',
'Pregnancy', 'Respiratory Inhaler', 'Corticosteroid Med',
'Chemotherapy Med', 'Immunosuppressive Med', 'Covid Infection',
'Covid Fever', 'Covid Fatigue', 'Covid Cough',
'Covid Gastrointestinal', 'Covid Anosmia',
'Covid RespiratoryProblems', 'Covid ConsciousnessDisorder',
'Covid Paresis', 'Covid ChestPain', 'Covid Headache',
'Covid SoreThroat', 'Covid Vertigo', 'Covid hospitalization',
'Dose1_Fever', 'Dose1_Fatigue',
'Dose1_Headache', 'Dose1_Nausea', 'Dose1_Chills','Dose1_Joint_Pain', 'Dose1_Muscle_Pain',
'Dose1_Local', 'BMI']
coeff_df = coeff_df.loc[order, :]
#coeff_df['Avg'] = [coeff_df.loc[i,:].map(lambda x: abs(x)).mean() for i in coeff_df.index]
#coeff_df.to_csv(f'{output_path}/reports/D2_{vaccine_type}_feature_importance_{time_to_put}.csv')
dfu = coeff_df.unstack().reset_index()
dfu.columns = list('XYS')
dfu["Sign"] = dfu["S"].apply(lambda x: 'red' if x>=0 else 'blue')
dfu["S"] = dfu["S"].apply(lambda x: abs(x))
plt.style.use('fivethirtyeight')
plt.style.use('seaborn-darkgrid')
import matplotlib.patches as mpatches
red_patch = mpatches.Patch(color=(252/255,79/255,48/255,1), label='Increase Probability')
blue_patch = mpatches.Patch(color=(0/255,143/255,213/255,1), label='Decrease Probability')
fig, ax = plt.subplots(figsize=(10, 30))
sns.scatterplot(x="X", y="Y", size = "S", hue="Sign", hue_order=['blue', 'red'], data=dfu, sizes=(20, 2000), legend=False)
plt.xticks(rotation=45)
plt.title(f"Feature Effect {name_dict[vaccine_type]}")
plt.ylabel("Background")
plt.xlabel("Side Effect")
legend = plt.legend(frameon = 1, handles=[red_patch, blue_patch])
frame = legend.get_frame()
frame.set_color('white')
fig.savefig(f'{output_path}/image/LogisticRegression_{vaccine_type}_Feature_Effect_{time_to_put}.png', bbox_inches='tight', dpi=400)
logging.info('All finished')