forked from snehankekre/st-codespaces
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathticket.py
89 lines (70 loc) · 2.9 KB
/
ticket.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import streamlit as st
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
from sklearn.decomposition import TruncatedSVD
# Function to perform text clustering
def cluster_text(data):
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(data)
# Reduce dimensionality
svd = TruncatedSVD(n_components=2)
X = svd.fit_transform(X)
# Perform clustering
kmeans = KMeans(n_clusters=4, random_state=0)
kmeans.fit(X)
return kmeans.labels_
# Function to suggest new categories
def suggest_categories(data):
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform(data)
# Reduce dimensionality
svd = TruncatedSVD(n_components=2)
X = svd.fit_transform(X)
# Perform clustering
kmeans = KMeans(n_clusters=4, random_state=0)
kmeans.fit(X)
# Get cluster centers
cluster_centers = kmeans.cluster_centers_
# Perform similarity search
similarities = []
for i in range(len(data)):
text_vector = X[i]
similarity = []
for center in cluster_centers:
similarity.append(cosine_similarity(text_vector.reshape(1, -1), center.reshape(1, -1)))
max_similarity = max(similarity)
similarities.append(max_similarity)
# Sort the texts by similarity and suggest categories for top 3
sorted_indices = sorted(range(len(similarities)), key=lambda k: similarities[k], reverse=True)
top_texts = [data[i] for i in sorted_indices[:3]]
return top_texts
# Main function to run the app
def main():
st.title("Support Request Categorization")
# Read CSV file
file = st.file_uploader("Upload CSV file", type=["csv"])
if file is not None:
df = pd.read_csv(file)
support_requests = df['Request'].tolist()
# Perform clustering
labels = cluster_text(support_requests)
# Categorized requests
categories = ['Software', 'Hardware', 'General Media', 'Other']
categorized_requests = {category: [] for category in categories}
for i, label in enumerate(labels):
categorized_requests[categories[label]].append(support_requests[i])
# Display categorized requests
st.subheader("Categorized Requests")
for category, requests in categorized_requests.items():
st.write(f"**{category}**: {len(requests)} requests")
for request in requests:
st.write(request)
# Suggest new categories
suggested_categories = suggest_categories(support_requests)
# Display suggested categories
st.subheader("Suggested Categories")
for i, category in enumerate(suggested_categories):
st.write(f"**Suggested Category {i+1}**: {category}")
if __name__ == "__main__":
main()