-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab1.R
223 lines (162 loc) · 5.38 KB
/
lab1.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#1. Wczytaj plik autaSmall.csv i wypisz pierwsze 5 wierszy
# https://mega.nz/file/5BF3TSwQ#zOXoJLAd4kHyPmn-75tfmel_iswpoxXT97AmH6qpsm0
# https://api.openweathermap.org/data/2.5/weather?q=Warszawa&appid=1765994b51ed366c506d5dc0d0b07b77
#getwd()
#?read.csv
data <- read.csv("./autaSmall.csv", encoding = "UTF-8")
df1 <- head(data,5)
df1
length(df1)
#2. Pobierz dane pogodowe z REST API
#install.packages("jsonlite")
#install.packages("httr")
library(jsonlite)
require(httr)
#httr::GET()
endpoint <- "https://api.openweathermap.org/data/2.5/weather?q=Warszawa&appid=1765994b51ed366c506d5dc0d0b07b77"
response <- GET(endpoint)
response
content <- content(response, "text")
content
fromJSON(endpoint)
fromJSON(content)
weatherDf <- as.data.frame(fromJSON(endpoint))
weatherDf <- as.data.frame(fromJSON(content))
View(weatherDf)
#3.Napisz funckję zapisującą porcjami danych plik csv do tabeli w SQLite
install.packages("DBI")
install.packages("RSQLite")
library(DBI)
library(RSQLite)
#?read.table
#?file
#?dbWriteTable
#
# i <- 0
# repeat{
# if(i>5){
# break
# }
# print(i)
# i <- i+1
# }
# 1
df1 <- read.table("autaSmall.csv", header=TRUE, sep=",", fileEncoding = "UTF-8", nrows=10)
# 2
con <- dbConnect(SQLite(), "auta.sqlite")
fileCon <- file(description = "autaSmall.csv", open="r", encoding = "UTF-8")
df1 <- read.table(fileCon, header=TRUE, sep=",", fill=TRUE, fileEncoding = "UTF-8", nrows=90)
View(df1)
myColNames <- names(df1)
myColNames
dbWriteTable(con, "tabela", df1, append=FALSE, overwrite=TRUE)
print(df1)
# zais do bazy
# ?nrow
print(nrow(df1))
repeat {
if(nrow(df1)==0) {
close(fileCon)
dbDisconnect(con)
break
}
df1 <- read.table(fileCon, col.names= myColNames, sep=",", fill=TRUE, fileEncoding = "UTF-8", nrows=90)
dbWriteTable(con, "tabela", df1, append=TRUE, overwrite=FALSE)
print(nrow(df1))
}
View(df1)
readToBase<-function(filepath,dbConn,tablename,size=100, sep=",",header=TRUE,delete=TRUE, encoding = "UTF-8"){
ap = !delete
ov = delete
fileCon <- file(description = filepath, open="r", encoding = encoding)
df <- read.table(fileCon, header=header, sep=sep, fill=TRUE, fileEncoding = encoding, nrows=size)
myColNames <- names(df)
dbWriteTable(dbConn, tablename, df, append=ap, overwrite=ov)
# print(df1)
print(nrow(df))
repeat {
if(nrow(df)==0) {
close(fileCon)
dbDisconnect(con)
break
}
df <- read.table(fileCon, col.names= myColNames, sep=sep, fill=TRUE, fileEncoding = encoding, nrows=size)
dbWriteTable(dbConn, tablename, df1, append=TRUE, overwrite=FALSE)
print(nrow(df))
}
}
dbConn <- dbConnect(SQLite(), "auta.sqlite")
filepath = "autaSmall.csv"
readToBase(filepath, dbConn, "auta2", 1000)
# 3a. Napisz funkcję zapisującą porcjami danych plik csv do tabeli w SQLite
# Utworzenie bazy na podstawie pliku auta2.csv - 3.2GB
install.packages("DBI")
install.packages("RSQLite")
library(DBI)
library(RSQLite)
con <- dbConnect(SQLite(), "auta2.sqlite")
readToBase<-function(filepath,con,tablename,size=100, sep=",",header=TRUE,delete=TRUE, encoding="UTF-8"){
ap = !delete
ov = delete
fileCon <- file(description=filepath, open = "r", encoding = encoding)
df1 <- read.table(fileCon, header = TRUE, sep=sep, fill=TRUE,
fileEncoding = encoding, nrows = size)
if( nrow(df1)==0)
return(0)
myColNames <- names(df1)
dbWriteTable(con, tablename, df1, append=ap, overwrite=ov)
# zapis do bazy
repeat{
if(nrow(df1)==0){
close(fileCon)
dbDisconnect(con)
break;
}
df1 <- read.table(fileCon, col.names = myColNames, sep=sep,
fileEncoding = encoding, nrows = size)
dbWriteTable(con, tablename, df1, append=TRUE, overwrite=FALSE)
}
}
readToBase("auta2.csv", con, "auta2", 1000)
#4.Napisz funkcję znajdującą tydzień obserwacji z największą średnią ceną ofert korzystając z zapytania SQL.
dbConn <- dbConnect(SQLite(), "auta.sqlite")
res <- dbSendQuery(dbConn, "SELECT tydzien, avg_week_price
FROM
(
SELECT tydzien, AVG(cena) as avg_week_price
FROM auta2
GROUP BY tydzien
)
WHERE avg_week_price=(SELECT max(avg_week_price)
FROM (select tydzien, AVG(cena) as avg_week_price
FROM auta2 GROUP BY tydzien))")
df_z_bazy <- dbFetch(res)
print(df_z_bazy)
dbClearResult(res)
dbDisconnect(dbConn)
#5. Podobnie jak w poprzednim zadaniu napisz funkcję znajdującą tydzień obserwacji z największą średnią ceną ofert tym razem wykorzystując REST api.
# http://54.37.136.190:8000/__docs__/
library(httr)
library(jsonlite)
url <- "http://54.37.136.190:8000/week?t="
df_weeks_avg_price = NULL
i = 0
repeat
{
i <- i + 1
page <- i
week_url <- paste(url, page, sep="")
getWeek <- GET(week_url)
getWeek_text <- content(getWeek, "text")
getWeek_json <- fromJSON(getWeek_text, flatten = TRUE)
getWeek_df <- as.data.frame(getWeek_json)
getWeek_avg_price <- mean(getWeek_df$cena, na.rm = TRUE)
print(getWeek_avg_price)
if(getWeek_avg_price == 0) {
break;
}
df_weeks_avg_price = rbind(df_weeks_avg_price, data.frame(page, getWeek_avg_price))
}
getWeek_max_avg_price <- subset(df_weeks_avg_price, df_weeks_avg_price$getWeek_avg_price == max(df_weeks_avg_price$getWeek_avg_price))
View(getWeek_max_avg_price)
write.csv(df_weeks_avg_price,"df_weeks_avg_price.csv", row.names = FALSE)