-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuccessRate.m
108 lines (103 loc) · 3.38 KB
/
successRate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function SUCCESS_RATE = successRate
% finds the Success Rate of detection of 2GKs next to each other when noise added
% either r or A is fixed plot several curves for SNR 3,5,7 and 8
% close all;
SIG=1.33;
Radi=20;
% colordef black;
figure
for i = 1:4 % default 7:-1:5
switch i
case 1
SNR = 1e+10;
colo = 'b';
case 2
SNR = 10;
colo = 'g';
case 3
SNR = 7;
colo = 'r';
case 4
SNR = 4;
colo = 'y';
end
% SNR=8; % 3,5,7 or 8!
ReIn=1; % if ReIn fixed - change r (A=ReIn+1 or A=2)
centr = [0 0];
c=0;
SUCCESS_RATE = [];
R_plot=[];
% Initializing progress bar
h = waitbar(0,'Calculating SUCCESS RATE for the concrete r or ReIn');
attempts = 2000; % default 1000
rmax = 5.5;
rmin = 4;
step = 0.01; % default -0.05
%--------------------------------------------------------------------------
% tic;
% for ReIn=0:1:19%4 %flagPlot=0
for r=rmin:step:rmax
successR=0;
for AARON = 1:attempts
I=[];GK1=[];GK2=[];y=[];x=[];
[j1,GK1]=Gauss2D11center(SIG,Radi,1+ReIn,centr);
[j1,GK2]=Gauss2D11center(SIG,Radi,1,[centr(1) centr(2)+r]);
I=zeros(31);
I=GK1+GK2;
I=I+(1/SNR.*randn(2*Radi+1)); % Signal-to-noise ratio
IG=gauss2d(I,1);
Imax=locmax2d(IG,[5,5]);
[y,x]=find(ne(Imax,0));% find the coordinates/positions of the local maxima
c2=0; % counter
% the position of the second speckle
d=createDistanceMatrix([1+Radi+centr(2)+r,1+Radi+centr(1)],[y,x]);
match = find(d<=1.5);
if length(match)>=2
error('two speckles too close')
end
if ~isempty(match)
successR = successR + 1;
end
% for i=1:length(y)
% if I(y(i),x(i))>0.5 %& I(y(i),x(i))<1.5
% c2=c2+1;
% end
% end
% if c2 == 2
% successR = successR + 1;
% end
end
%Update wait bar
c=c+1;
waitbar(c/((rmax-rmin)/step),h);
SUCCESS_RATE=[SUCCESS_RATE,(successR/attempts)*100];
R_plot = [R_plot,r];
end
% toc;
%Close waitbar
close(h);
plot(R_plot,SUCCESS_RATE,colo);
hold on
%-------------------------------------------------
% cf=polyfit(R_plot,SUCCESS_RATE,6);
% ffd=cf(1).*R_plot .^6+cf(2).*R_plot.^5+cf(3).*R_plot.^4+cf(4).*R_plot.^3+cf(5).*R_plot.^2+cf(6).*R_plot+cf(7);
% plot(R_plot,ffd,'r')
%------------------------------------------
% x0=[0 0];
% FIT_LSQ = lsqnonlin(@fit_simp,x0,R_plot,SUCCESS_RATE)
% plot(R_plot,FIT_LSQ,'r');
%------------------------------------------------------
end
hold off
ylabel('SUCCESS RATE [%]')
xlabel('DISTANCE')
%--------------------------------------------------------------------------
% DEBUG FIGURES
% figure,imshow(Imax,[]);
% title('I max');
% figure,imshow(IG,[]);
% hold on;
% plot(x,y,'g*');
% plot(1+Radi+centr(1),1+Radi+centr(2)+r,'r.')
% hold off;
% title('the filtered image with the local maxima');